

Linear Protection Switching
Requirements

Simulation & Verification

Graduation report

J.L.R. de Graaff
29 August, 1997

Delft University of Technology
Faculty of Electrical Engineering
Telecommunications and Traffic-
Control Systems Laboratory

Supervisor ir. J.A.M. Nijhof
Graduation no. A-786

 Lucent Technologies
 PRC Platform
 Huizen, The Netherlands

Supervisor ir. F. Speelman
Technical mentor ir. M.P.J. Vissers
Coach ir. S.L. Goede
Document JNL 241-R-97003

Linear Protection Switching
Requirements

Simulation & Verification

Graduation report
Author: J.L.R. de Graaff
College number: 275398
Report date: 26 February, 2001
Graduation date: 29 August, 1997

Acknowledgments

II

A sketch of protection switching, as used on the graduation presentation invitation card
for friends and family.

Acknowledgments

III

Acknowledgments

This report describes my graduation research at Lucent Technologies. The research is done in
the Cross Product System Engineering group of the Platform organization.

The graduation research is supported from the Telecommunications and Traffic-Control
laboratory of the faculty of Electrical Engineering of the Delft University of Technology.

System specification modelling and verification is relatively young area and there is a great
need for methods and tools. Additionally, there was need for the verification of the linear
protection switching protocol described in ETSI ETS300-417 specification. My graduation
project is about both subjects.

Besides reporting about research results, this report intends to give an overview of
− Transport networking (SDH in particular)
− Linear protection switching
− The APS protocol
− The verification tool SPIN and its language PROMELA.

I would like to thank Jos Nijhof for his willingness to supervise my graduation project, Frans
Speelman for his open-minded and pleasant guidance, Maarten Vissers for his enthusiastic
support, my room-mate Wouter Boeke for his constructive criticism and interesting lunch
breaks and last but not least my coach Sam Goede for the good conversations and for his
guidance.

Also I would like to thank Maarten Vissers for the cake he treated when I found the fifth error
in the specifications. This little (and pleasant) contest was placed to encourage me to find as
much errors as possible.

Finally I would like to thank my friends Berend Vosmer, Erwin Wils and especially Patricia
Lansbergen for their support and discussions in the final period of my study.

In annex E, a paper is included in a standard publication style. It is part of the graduation
procedure to deliver such a publication covering the graduation work. Of course, this can also
be used as an abstract for this report.

Contents

IV

Contents

Acknowledgements... III
Abstract.. VII
Samenvatting... VIII
List of Figures ... X
List of Tables.. XII

1 INTRODUCTION... 1

2 SYSTEM SPECIFICATIONS.. 3

2.1 System Engineering ...3
2.2 System Specifications ..4

3 TRANSPORT NETWORKS .. 7

3.1 Introduction in Transport Networks...7
3.2 Functional Modelling ... 10
3.3 Synchronous Digital Hierarchy (SDH) ... 14

4 PROTECTION SWITCHING.. 17

4.1 Introduction in Protection Switching.. 17
4.2 Linear Protection Switching... 19
4.3 Linear Protection Switching in SDH .. 24
4.4 Automatic Protection Switch Protocol... 28
4.5 The ETSI ETS 300-417 Linear Protection Switching Specifications............................. 31

5 SYSTEM VERIFICATION.. 35

5.1 Introduction in System Verification.. 35
5.2 The Model Checker SPIN.. 37
5.3 The Modelling Language PROMELA.. 38
5.4 Simulating and Validating with SPIN... 41
5.5 The ETSI Specifications modelled in PROMELA .. 47

6 ETSI SPECIFICATION VERIFICATION... 51

6.1 Simulation and Validation Output .. 51
6.2 Verification results... 54

6.2.1 Reverse Request is replied with Reverse Request ... 54
6.2.2 Forced switch has higher priority than SF on protection... 55
6.2.3 Forced switch is not removed at SF on protection.. 56
6.2.4 DNR is not cleared after RR.. 57
6.2.5 SF on protection does not remove SF for a working link.. 58
6.2.6 Absent code for dropping WTR... 59

6.3 Open issues ... 60
6.3.1 Selector is released at SF on protection ... 60
6.3.2 Extra traffic is removed on SD on protection... 61
6.3.3 Alternative structure to distinct normal and SF/0 case better 61

Contents

V

6.3.4 Handling of an all-ones APS message .. 61

7 GRAPHICAL SIMULATIONS.. 63

7.1 Simulation Data Presentation... 63
7.2 A Graphical Simulator: InSPIN.. 65
7.3 InSPIN interface and commands .. 66
7.4 The Structure of InSPIN.. 68

8 CONCLUSIONS.. 73

References.. 75

Annex A: Generic Specification of Linear Protection Switching operation (ETSI)
Annex B: The PROMELA model of the ETSI Protection Switching Process
Annex C: Basic SPIN Manual
Annex D: The modelling of time in PROMELA
Annex E: Graduation research paper

VI

Abstract

VII

Abstract

The electronic systems we design today, are becoming larger and more complex. This is
especially true for telecommunication systems. Such systems are first designed at a functional
level. This is described in specifications. These system specifications are used for further
development of the system. It is of great importance that these specifications are correct.
Errors in specifications could result in significant costs if they are detected in further
development, and in even more problems if they are not.

Describing system behavior calls for modelling methods and specification languages. System
behaviour has multiple aspects and each demand specific modelling techniques. Examples are
functional behaviour, the behaviour in time and the architectural structure. To determine
whether specifications are correct or not, they must be verified. System verification can
principally be done by reasoning or by structural analysis, but for larger and more complex
systems, this is not feasible any more. Automated verification methods are needed and the
computer is used for this purpose.

System simulation gives great insight in its behaviour, but in order to determine the absolute
correctness of system specifications, a more thorough method is needed. Verifying that all
possible states of the system are correct, is called validating. In order to validate a system,
correctness requirements must be specified. These requirements are used by the verification
tool to analyze the system in an exhaustive manner to proof its correctness.

A problem with this method is called the state explosion problem. The verification tool
translates the system description into a finite state machine, after which it can analyze its states.
For large and complex systems, such translation can result in an enormous number of states.
Limitations prevent such a full state search. Common limitations are the available memory (to
store which state is analyzed) and the maximum time a validation may take. Another method
must be introduced, called state reduction. The verification based on this technique is called
proof approximation. The verification tool SPIN supports state reduction techniques and is
capable to perform all mentioned verification techniques. Its modelling language, PROMELA,
has all expression power that is needed for modelling distributed systems.
With this tool the linear protection switching specifications are verified.

Protection switching is a method to provide a certain level of survivability in a transport
network by means of diversity. When a transmission line fails, its traffic is switched over a pre-
assigned redundant transmission line, called protection line. In linear protection switching two
nodes coordinate this protection switching, by means of a protocol. The specification of this
protocol is verified. It has resulted in the detection of several errors and new insights.

Another issue in communication network simulation is the graphical presentation of the
behaviour. A method is developed that enables the design of a graphical model and the
presentation of simulation results in that model. The basis of this method is that the graphical
model is defined independent of the system model. This results in the freedom to determine the
abstraction level at which the simulation presentation is desired and the shielding of certain
system behaviour details.

Samenvatting

VIII

Samenvatting

De elektronische systemen, die we tegenwoordig ontwerpen, worden groter en complexer. Dit
geldt in het bijzonder voor telecommunicatiesystemen. Zulke systemen worden eerst ontwor-
pen op een functioneel niveau. Dit wordt beschreven in specificaties. Deze systeemspecificaties
zijn de basis voor de verdere ontwikkeling van het systeem. Het is bijzonder belangrijk, dat
deze specificaties correct zijn. Fouten in specificaties kunnen in aanzienlijke kosten resulteren
als ze worden gevonden in de verdere ontwikkeling, en zelfs in grotere problemen als ze niet
worden gevonden.

Om systeemgedrag te kunnen beschrijven zijn er methoden en specificatietalen nodig. Systeem-
gedrag heeft meerdere aspecten and elk vraagt om specifieke modelleringstechnieken. Voor-
beelden zijn functioneel gedrag, het gedrag in de tijd en de structuur van de architectuur. Om
te kunnen bepalen of specificaties correct zijn, moeten ze worden geverifieerd. Systeem-
verificatie kan in principe door redeneren of structurele analyse gedaan worden, maar voor
grotere en complexere systemen wordt dat ondoenlijk. Daar zijn automatische verificatie-
methoden voor nodig en hiervoor wordt de computer gebruikt.

Systeemsimulaties geven een goed inzicht in het gedrag, maar er is een grondigere methode
nodig om te kunnen bepalen of de systeemspecificaties absoluut correct zijn. Het verifiëren van
alle mogelijke toestanden van een systeem, wordt valideren genoemd. Om een systeem te
kunnen valideren zijn correctheidsregels nodig. Deze regels worden door het verificatie-
programma gebruikt om het systeem op een uitputtende manier te analyseren, zodat de
correctheid bewezen kan worden.

Een probleem van deze methode is het toestand explosie probleem. Het verificatieprogramma
vertaald de systeembeschrijving in een ‘finite state machine’, waarna de toestanden geana-
lyseerd kunnen worden. Voor grote en complexe systemen, kan dit resulteren in een enorme
hoeveelheid toestanden. Beperkingen staan een volledige toestandsanalyse in de weg. Veel
voorkomende beperkingen zijn de hoeveelheid geheugen (om de toestanden die geanalyseerd
zijn op te slaan) en de maximum tijd die de validatie mag duren. Een andere methode, genaamd
toestandsreductie, is nodig. De verificatie gebaseerd op deze techniek wordt bewijsbenadering
genoemd. Het verificatieprogramma SPIN gebruikt deze toestandsreductie technieken en is in
staat om al de genoemde verificatie technieken uit te voeren. Haar modelleringstaal,
PROMELA, heeft al het benodigde expressievermogen om gedistribueerde systemen te
modelleren.
Met dit programma wordt de ‘linear protection switching’ specificaties geverifieerd.

‘Protection switching’ is een methode om een bepaald beschikbaarheidsniveau te bereiken door
middel van diversiteit in een transport netwerk. Als een transmissielijn faalt, wordt het verkeer
daarvan geschakeld over een van te voren toegekende redundante transmissielijn, die
‘protection’ lijn wordt genoemd. Bij ‘linear protection switching’ coördineren twee knoop-
punten van het netwerk deze ‘protection switching’, door middel van een protocol. The speci-
ficatie van dit protocol wordt geverifieerd. Het heeft geresulteerd in het vinden van verschei-
dene fouten en het verkrijgen van nieuwe inzichten.

Samenvatting

IX

Een andere kwestie bij het simuleren van communicatienetwerken, is de grafische presentatie
van het gedrag. Een methode is ontwikkeld, die het mogelijk maakt om een grafisch model te
ontwerpen en de simulatieresultaten in dat model te presenteren. Uitgangspunt van deze
methode is dat het grafisch model onafhankelijk van het systeemmodel gedefinieerd kan
worden. Dit geeft de vrijheid om te bepalen op welk abstractieniveau de simulatiepresentatie is
gewenst en om bepaalde details van het systeemgedrag te verbergen.

List of Figures

X

List of Figures

Figure 2-1 System realization structure ...4
Figure 2-2 Requirements of successful specifications...5
Figure 3-1 Information transport in a transport network..7
Figure 3-2 The layering and partitioning concept...8
Figure 3-3 The layer categories of a layered network ..9
Figure 3-4 The atomic functions and their interconnection .. 10
Figure 3-5 Source and sink directions ... 11
Figure 3-6 Network fragment illustrating functional modelling .. 11
Figure 3-7 The trail and connections of a network layer .. 14
Figure 3-8 The SDH network layers ... 15
Figure 3-9 SDH frame structure.. 16
Figure 4-1 Network topologies ... 18
Figure 4-2 A star topology on top of another topology ... 19
Figure 4-3 Linear Protection Switching... 20
Figure 4-4 A simpler way to visualize Linear Protection Switching 21
Figure 4-5 Linear Protection Architecture Types... 22
Figure 4-6 Linear Protection Switching Type.. 23
Figure 4-7 Interworking of protection schemes ... 28
Figure 4-8 APS messages ... 29
Figure 4-9 Message flow in the APS protocol... 31
Figure 4-10 The subdivision of the protection process... 32
Figure 4-11 A fragment of the ETSI specifications pseudocode... 33
Figure 5-1 Execution sequences.. 42
Figure 5-2 Low search quality... 44
Figure 5-3 The hash function projection.. 45
Figure 5-4 Partial Search .. 46
Figure 5-5 The mapping of the pseudocode onto PROMELA ... 48
Figure 5-6 A fragment of the PROMELA model of the ETSI specifications 48
Figure 5-7 The PROMELA model of the ETSI specifications ... 49
Figure 6-1 The PROMELA model simulation output .. 52
Figure 6-2 SPIN validation output in Full statespace search .. 53
Figure 6-3 SPIN validation output in Bit statespace search.. 53
Figure 6-4 Reverse Request is replied with Reverse Request: Incorrect behaviour................. 54
Figure 6-5 Reverse Request is replied with Reverse Request: Correction in code 55
Figure 6-6 Forced switch has higher priority than SF on protection: Incorrect behaviour....... 55
Figure 6-7 Forced switch has higher priority than SF on protection: Correction in code 56
Figure 6-8 Forced switch is not removed at SF on protection: Incorrect behaviour................ 56
Figure 6-9 Forced switch is not removed at SF on protection: Correction in code 57
Figure 6-10 DNR is not cleared after RR: Incorrect behaviour .. 57
Figure 6-11 DNR is not cleared after RR: Correction in code.. 58
Figure 6-12 SF on protection does not remove SF for a working link: Incorrect behaviour.... 58
Figure 6-13 SF on protection does not remove SF for a working link: Correction in code 59
Figure 6-14 Absent code for dropping WTR: Incorrect behaviour... 59

List of Figures

XI

Figure 6-15 Absent code for dropping WTR: Correction in code .. 60
Figure 6-16 Selector is released at SF on protection.. 60
Figure 6-17 Extra traffic is removed on SD on protection ... 61
Figure 7-1 Three SNC protection rings with dual node interconnection................................. 64
Figure 7-2 SPIN in- and output... 65
Figure 7-3 Communication with SPIN .. 65
Figure 7-4 The InSPIN graphical elements.. 67
Figure 7-5 The InSPIN interface ... 68
Figure 7-6 InSPIN class inheritance structure.. 69
Figure 7-7 InSPIN object structure ... 70

List of Tables

XII

List of Tables

Table 4-1 The protection switching request types.. 25
Table 4-2 Request type priority... 34
Table 5-1 Modelling languages and tool description.. 36
Table 5-2 Correlation between Hash Factor and Coverage .. 46
Table 5-3 The labels of the code of the subprocesses... 49
Table 7-1 The InSPIN graphical elements ... 67

XIII

1

1 Introduction

The electronic systems we design today, are becoming more and more complex. This is
especially true for telecommunication systems. Generally, the behaviour and functionality in the
first stages of specification, will be described in the plain English language. In a later stage,
when more detailed information is necessary, a more formal way of specification semantics will
be required.
From the highest level of behavioral system description, we will derive a more detailed
behavioral decomposition in order to come to a set of implementable system requirements.
Furthermore, our systems have to be compatible with related telecom systems on network
level.

A first and most important issue in specification is the specification itself. How can system
behaviour be modelled? What are the characteristics of the aspects of system behaviour? What
languages are needed? Can we model a system in one language or do we need different
languages for different aspects of the system? And how do these languages interact?
If a system cannot be modelled adequately, problems are not far away.

The second issue is: How do we know if these specifications are correct? Do these
specifications actually describe the intended behaviour? Errors in these specifications can be
disastrous for the functioning of the system, either on a equipment level or on the network
level. When for example an error in a protocol, on which a large public telephone network is
relying, results in breaking down of all communications, thousands of users are cut off. Such
catastrophes results in significant loss of revenues or even human lives.

Verification of system specifications is an absolute must. Besides the determination of
correctness of specifications, the verification process also adds insight and confidence in the
system.

The objectives of this research are:
1. an investigation how system specifications can be modelled and how they can be verified,
2. the verification of the linear protection switching specification from the ETSI ETS300-417

document, the interpretation of the findings and an investigation of a possible solution,
3. an investigation in improvements of the verification environment.

The report has the following structure:
In chapter 2 the system engineering process is described and system specification is
investigated.
In chapter 3 transport networks and several related concepts are discussed.
In chapter 4 is protection switching discussed.
In chapter 5 the investigation in system verification methods is presented.
In chapter 6 the results of the verification of the ETSI specifications are discussed.
In chapter 7 is graphical simulation as an improvement for the verification process is discussed.

3

2 System Specifications

Describing a system is a complex task that has many pitfalls. In this chapter the character of
system specifications is discussed. First the system engineering process is described (2.1) and
then the properties of system specifications are examined (2.2).

2.1 System Engineering

In [Arn94] system engineering is defined as:

‘the technical discipline concerned with selection and development of an optimum overall
solution to a functional problem defined in a real environment’

The system engineer is primarily concerned with the functional behaviour at a certain
abstraction level. Implementation details are not considered, other than that limitations are
considered and specific technology choices are accepted.

In [NW96] a system realization structure was presented, which is repeated Figure 2-1. Within
Lucent there is often referred to this structure. Particularly in designing telecommunication
systems, system engineering has much to do with external standardization documents. The
Tier-x notation refer to the documents that are passed on to the next design/development
phase.

Chapter 2 System Specifications

4

Customer

Features

Customer

Features

Standard
Committees

Standards

Standard
Committees

Standards

System
Engineering

Requirements
Specifications

System
Engineering

Requirements
Specifications

Architecture
Team

System
Architecture

Architecture
Team

System
Architecture

Hardware

Development

Hardware

Development

Software

Development

Software

Development

System Integration
System Integration

System Certification
System Certification

Tier-2

Tier-3

Tier-4

Figure 2-1 System realization structure

As systems become larger and more complex, the system engineering and architecture
discipline is becoming more important and it is more difficult to verify. Especially public
telecommunication systems, that inherently have a large number of users, demand an increasing
effort to be designed.

2.2 System Specifications

The description of a system is called a system specification. It is crucial that these
specifications are correct, because they are used as a starting-point for implementing the
system. Design errors made in this design phase, commonly surface if the system is (partially)
implemented. The later an error surfaces, the more difficult it is to correct or the more
expensive it is to return to this phase.

Paragraph 2.2 System Specifications

5

Figure 2-2 Requirements of successful specifications

In Figure 2-2 a list of requirements is presented, that are desirable for specifications. Some of
these requirements conflict and that makes it hard for to satisfy all of them.

Requirement A is the fundamental purpose of specifications. Requirement B addresses over-
specification. Requirement C addresses implementability of the specifications. Requirement D
demands that specifications can be understood and related to common terms and concepts.
Requirement E demands the specification to be testable; this requires that the specification also
formulates what exactly is correct. Requirement F demands the specification to be
understandable by the computer. Requirement G and H address the maintainability and
transportability of specifications.

The worst verification is verification by reasoning. The correctness is obvious because the
designer has designed the system to meet the requirements he has in his mind. Exactly what he
has not in mind, is the common cause for errors.

It is essential that the specifications are entered as formal as possible. Formal specification
demands the designer to look at the system in a precise and complete way. When the system is
specified formally, it can easily be verified with use of the computer. Another property of
formal verification is that besides the specification of the system a specification of correct
behaviour is necessary. To view the system from a viewpoint of absolute requirements rules,
also adds insight.

Successful specifications are:
A) Complete, correct, unambiguous and consistent
B) Minimal
C) Usable
D) Identifiable, traceable and surveyable
E) Verifiable and testable for properties
F) Executable
G) Easily modified
H) Linkable to other requirements

7

3 Transport Networks

In this chapter an overview of transport networking is presented (3.1). Several concepts that
are needed to discuss its characteristcs are presented (3.2) and specifically the Synchronous
Digital Hierarchy is discussed (3.3), which we need as a basis for the examination of protection
switching.

3.1 Introduction in Transport Networks

A transport network is a network system that is concerned with the transport of information
from one location to another. Connections are set up by a network manager. Connections are
of fixed bandwidth, have a fixed route and exist until broken down by the network manager.

A common purpose of a transport network is the transportation of telephone traffic. When for
example subscriber A wants to call subscriber B, then the exchange of subscriber A switches
the call over a connection in the transport network to the exchange of subscriber B. This is
illustrated in Figure 3-1.
Note that the transport network does not switch the actual traffic, it only provides fixed
connections. One could call this static routing. This is a fundamental difference with data
networks. Data networks route all traffic dynamically and can be much more efficient, because
the traffic is allocated the exact needed bandwidth and unused bandwidth is available for other
traffic.

Subscriber A Subscriber B

Network manager

Transport network

Network nodes

Exchanges

X X

Transport connection

Figure 3-1 Information transport in a transport network

Managing large transport networks could become very complex. Two concepts to manage the
complexity are:
• Layering
• Partitioning.

Chapter 3 Transport Networks

8

A transport network can be decomposed into a number of independent transport layer
networks with a client/server association between adjacent layers. Each layer network can be
separately partitioned in a way which reflects the internal structure of that layer network or the
way that it will be managed. Thus the concepts of partitioning and layering are orthogonal, as
shown in Figure 3-2.

Transmission media
layer network

Specific path layer
network

Specific path layer
network

Layer view Partitioning view

Access points

Subnetworks Links

A layer network

Figure 3-2 The layering and partitioning concept.

Layering

Layering allows the transport network functionality to be described hierarchically as successive
levels.

The layering concept of the transport network allows:
− each layer network to be described using similar functions,
− the independent design and operation of each layer network,
− each layer network to have its own operations, diagnostics and automatic failure recovery

capability,
− the possibility of adding or modifying a layer network without affecting other layer

networks from the architectural viewpoint,
− simple modelling of networks that contain multiple transport techniques.

Paragraph 3.1 Introduction in Transport Networks

9

The ITU1 uses the layer categories in Figure 3-3 to divide networks into specific layers.

Circuit layer networks

Path layer networks

Transmission media layer networks

Figure 3-3 The layer categories of a layered network

The lowest layer network category is the transmission media layer. It’s connections consist of
the physical transportation facilities such as: fiber links, electrical links (coaxial cable),
radiowave links or satellite links. These layers are primarily concerned with modulation,
synchronization and regeneration.

The path layer networks primarily provide the flexibility of the network. Paths can be set up
and torn down as they circuit layer networks need them.

The highest layer network category is the circuit layer. This layer network provides users with
direct telecommunications services such as circuit switched and leased line services.

Note that layering should not be confused with the layers of the OSI model. The layers
described here each form an independent network, while the OSI model layers represent
services at different abstraction levels in one network.

Partitioning

The partitioning concept enables a network layer to be divided into subnetworks. The
partitioning concept is recursive; subnetworks can be partitioned in smaller subnetworks
interconnected by links.

The partitioning concept is important as a framework for defining:
• The network structure within a layer.
• Administrative boundaries between network operators jointly providing connections within

a single layer network.
• Domain boundaries within a layer network of a single operator to allow the apportioning of

performance objectives to the architectural components.
• Routing domain boundaries within the layer network of a single operator.
• The part of a layer network or subnetwork that is under control of a third party for routing

purposes (e.g. customer network management).

1 International Telecommunication Union

Chapter 3 Transport Networks

10

Examples of transport networks are:
− the Synchronous Digital Hierarchy (SDH),
− the Synchronous Optical Network (SONET),
− the Asynchronous Transport Mode (ATM) network..

SONET is an ANSI1 standard. SDH is an ETSI2 standard and developed to be compatible with
SONET. Therefore there is a great resemblance between SDH and SONET. An important
difference is that SDH is accepted as a world-wide standard.
ATM is a relative new transport technique and is fundamentally different from SDH and
SONET, in that the communications are asynchronous. It is particularly efficient in
transporting traffic with different bandwidths and characteristics. Although the actual transport
is different, a lot of concepts from the synchronous world also apply to ATM.

3.2 Functional Modelling

Functional modelling is a methodology to decompose network functionality into a collection of
functions. There are three types of functions, called atomic functions, of which a network
(layer) can be described. Each represents a characteristic operation. Functional modelling is
also very useful in describing the layering and partitioning concepts.

The atomic functions are:
• the connection function,
• the adaptation function,
• the termination function.

A

TT

Adaption

Trail Termination

Connection

A

C

TT

Figure 3-4 The atomic functions and their interconnection

The atomic function interconnection is always as shown in Figure 3-4. The direction from trail
termination function towards connection function is called source direction. The direction from
connection towards trail termination function is called sink direction. This is illustrated in
Figure 3-5. Often, the unidirectional links are grouped and presented as bidirectional links.

1 American National Standards Institute
2 European Telecommunications Standards Institute

Paragraph 3.2 Functional Modelling

11

TT

Source direction

C TT

Sink direction

Figure 3-5 Source and sink directions

In Figure 3-6 a network fragment is shown to illustrate functional modelling. Each layer is
described by a set of atomic functions. Note that the adaptation function is actually an inter-
layer function, presenting the conversion between a client and server layer. It is usually drawn
in the server layer.

A

TT

C

A

TT

C

A

TT

C

A

TT

C

TRAIL

NETWORK CONNECTION (NC)

CP

AP

TCP

CP

AP

TCP

CP

AP

TCP

CP

AP

TCP

LINK CONNECTION (LC)

TRAIL

NETWORK CONNECTION

CP CP

SNCLC LC

Client
Layer

Network

Server
Layer

Network

Client
Layer

Server
Layer

Figure 3-6 Network fragment illustrating functional modelling

The fundamental entity in a layer network is the trail. It is a transport entity responsible for the
integrity of transfer of characteristic information. Characteristic information in a network
(layer) is a signal of a specific rate and format.

A trial is called a circuit in a circuit layer network, a path in a path layer network and a section
in the section layer network. Section layer networks are part of the transmission media layer
network category (this is discussed in the next paragraph).

Chapter 3 Transport Networks

12

Each atomic function is discussed and its characteristic operation is explained.

Connection function

Provides flexibility within the layer. It may be used by the network operator to provide:
routing determination and setting up connections.
grooming the allocation of server layer trails to client layer connections which

groups together client layer connections whose characteristics are similar
or related.

protection explained in paragraph 4.1
restoration explained in paragraph 4.1

Trail termination function

Performs the signal integrity supervision of the layer.

In the source direction it generates and adds: In the sink direction, it monitors:
− error detection code − bit errors
− trail trace identifier − (mis)connections

 − near- and far-end performance
 − server signal fail
 − signal loss

Adaptation function

Represents the conversion process between a server and a client layer. Processes that may
be present are:
scrambling/descrambling alters the digital signal to ensure a sufficient density of

0→1 and 1→0 transitions to allow bit clock recovery
from it.

encoding/decoding adapts a digital signal to the characteristics of the
physical channel.

alignment (frame, pointer
interpretation)

locates the start of a frame or the pointer location and
reports a loss of frame or pointer (LOF, LOP)

bit rate adaptation accepts a different bitrate than the output bitrate by
means of creating or removing gaps.

frequency justification accepts an input at a different frequency (and/or phase)
than the output by writing data into allocated
justification bits.

multiplexing/demultiplexing information of multiple sources end up in pre-allocated
time slots in the resulting time-division signal.

timing recovery extracts a clock signal from an incoming signal.
smoothing filters the phase step of ‘gapped input signals’.
payload identification the insertion and checking of Trail Signal Label (TSL)

to allow different client signals.

Paragraph 3.2 Functional Modelling

13

Reference points are defined as delimiters of the function blocks.
They are:
Access Point (AP) between adaptation and termination function
Connection Point (CP) between connection and adaptation function
Termination Connection Point (TCP) between termination and connection function

Between the reference points, information is transported over transport entities. Two basic
entities are distinguished according to whether the information is monitored for integrity.
These are trails and connections. Connections can be further distinguished in three types.

The different transport entities are:
Trail represents the transfer of monitored adapted information between

access points.
Network connection is capable of transferring information across a layer network. It is

delimited by TCPs. It is formed from subnetwork connections
and/or link connections.

Subnetwork connection is capable of transferring information across a subnetwork. It is
delimited by CPs at the boundary of the subnetwork.

Link connection is capable of transferring information across a link. It is delimited
by ports (CPs) and represents a fixed relation between the ends of
a link. A link connection represents a pair of adaptation functions
and a trail in the server layer network.

The largest subnetwork connection on a trail is a network connection, the smallest a link
connection.

Chapter 3 Transport Networks

14

access point

connection point

link connection

subnetwork connection

subnetwork
domain
boundaries

trail

Figure 3-7 The trail and connections of a network layer

3.3 Synchronous Digital Hierarchy (SDH)

SDH is developed with the following objectives:
• become a world-wide synchronous digital transport network standard.
• capable of transporting the (at that time) widespread PDH1 signals efficiently.
• Full connectivity on all levels such that network operators are free in choosing equipment

from any manufacturer.
• Enhanced Operation, Administration and Maintenance (OA&M) capabilities by the

allocation of overhead capacity in the SDH frame.

In order to be capable of transporting the different regional PDH bitrates, SDH has a complex
multiplexing structure. This structure goes hand in hand with the network layering. See
[Hol91] for more information.

The SDH network layers are shown in Figure 3-8:
− Lower order path layer (LP)
− Higher order path layer (HP)
− Multiplex section layer (MS)
− Regeneration section layer (RS)
− Optical/electrical section layer (OS/ES)

1 Plesiochronous Digital Hierarchy; a near synchronous communication: accommodates traffic

sources with (slightly) different clocks and different path delays by means of justification.

Paragraph 3.3 Synchronous Digital Hierarchy (SDH)

15

Lower order path layer

Regeneration section layer

Multiplex section layer

Circuit layer networks

Path layer networks

Transmission media layer networks

Optical/Electrical section layer

Higher order path layer

SDH layersLayer categories

Figure 3-8 The SDH network layers

The Multiplex section layer, together with the layers beneath: the Regenerator section layer
(signal regeneration between communication links) and the Physical media Layer (fiber, coaxial
cable or radio link), form the transmission media layer.

SDH has two path layers to achieve the necessary flexibility in multiplexing the different PDH
signals.

A limited overview of the SDH frame structure is shown in Figure 3-9. It has no intention to
be a complete description, it only explains the basic terms. For a more complete overview the
reader is referred to [SR91].

Chapter 3 Transport Networks

16

RSOH

MSOH

POH

STM-N
(9 x Nx270 bytes)

VC-x

time

transmission
line

Figure 3-9 SDH frame structure

In the MS layer frames of 125 µs duration are transported. This is an inheritance from the PDH
networks. Such a frame as called Synchronous Transfer Module (STM). There are several
levels of modules, denoted by STM-N with N=1, 4, 16 and 64, corresponding to different
signaling rates. As in Figure 3-9, the frame is usually drawn in matrix form. The matrix
presents rows and columns of bytes. The frame is transmitted on a per row basis.

In the STM frame an overhead defined, called section overhead (SOH). This overhead consists
of two parts: the regeneration section overhead (RSOH) and the multiplex section overhead
(MSOH).
In the STM frame smaller structures are transported, called Virtual containers (VC). These
VCs form the communication in the path layers. In the VC is also overhead defined: path
overhead (POH).

To satisfy the requirements for the transfer of OA&M messages across the network nodes, a
Data Communications Channel (DCC) is defined within the multiplex section overhead. Based
in these data channels, a protocol stack, according to the ISO OSI model, is defined, called
Embedded Communications Channel (ECC). Network management systems use this packet
network to observe and control the network.

17

4 Protection Switching

With transport networks several methods are used to guarantee the availability of transport
services. In this chapter such a method, called protection switching, is discussed. First an
general introduction into protection switching is presented (4.1). Then the operation and
modes of linear protection switching is discussed (4.2). In 4.3 the aspects of linear protection
switching in SDH networks are discussed and in 4.4 the details of the APS protocol are
explained. The ETSI linear protection switching specifications are discussed in 4.5.

4.1 Introduction in Protection Switching

Failures and survivability

Protection switching is a method to provide a higher level of survivability in a transport
network by means of diversity. Network survivability is defined as the ability to provide
continuity of transport services in the presence of failures.

Some examples of failures are:
• Hardware failures
• Accidents
• Architecture/protocol errors
• Maintenance errors
• Management procedural errors

The causes for failures can be split in three categories as is done in ITU recommendation
M.495:
− Equipment failure (this can be reduced by improving equipment reliability).
− Outages due to operating organization. For example, maintenance work or human errors.
− External causes which are very difficult to prevent and for which specific protection might

be needed.

It is assumed that design errors belong to the first category.

One quality measure of a network is availability. Availability is the percentage of total time that
a service is available, taken over a long period of time.

Availability enhancement techniques

There are two ways to automatically recover without waiting on the problem to be located and
fixed, namely protection and restoration. Protection is a method of alternate capacity selection
that makes use of preplanned and reserved capacity in the network. In case of restoration the
redundant capacity is not preassigned and must be ‘discovered’ by some network intelligence,
which uses a method to select alternate capacity based on the current network status.

Chapter 4 Protection Switching

18

An important distinction is based on response time. Restoration of service after failure has
usually been associated with a slow, often manual response, while protection is assumed to be
fast and autonomous. Today, automatic protection switching response times are less than 50
milliseconds while restoration based on digital cross-connect systems can take many minutes.

Object of protection

In protection switching, equipment and transmission protection switching can be distinguished.
Equipment protection is concerned with the selection of equipment parts. Equipment
protection takes place if a system detects a hardware failure. Redundant parts take over from
the failed parts within the system. Transmission protection switching is concerned with
selection of received signals, based on quality thresholds.

Although the mechanisms for equipment and transmission protection switching are basically
the same, only the latter is a topic in standardization. Equipment protection switching is left to
the vendors, as an implementation aspect of high reliability and availability requirements per
system. In many cases and also in this report the term protection switching is used instead of
transmission protection switching.

Protection switching process

The protection switching operation is achieved by the protection switching process which
makes use of one or more pre-assigned protection entities that can be used to replace one or
more working entities in case of a failure by means of protection switches. In a transport
network the working and protection entities are transport entities, for example a complete
transmission line between two nodes or a single transmission channel passing many nodes and
links.

Protection topology and network layer topology

A topology describes the logical interconnection patterns of ‘nodes’ with their interconnecting
‘links’. Some basic topologies are shown in Figure 4-1.

Linear

Ring

Star

Meshed

Figure 4-1 Network topologies

Paragraph 4.2 Linear Protection Switching

19

In case of protection topology the ‘nodes’ are the protection switches and the ‘links’ comprise
both the ‘working’ and ‘protection’ transport entities. A working transport entity is pre-
assigned to provide transport service. A protection transport entity is pre-assigned as standby
transport entity to provide transport service in case the working transport entity fails.

It is important to distinguish the protection topology from the topology of the network layers.
Each layer has its own independent topology. See Figure 4-2.

Figure 4-2 A star topology on top of another topology

Today only the linear and the ring topologies have proved to be of practical use. The reason
for this is that protection switching is required to be a very fast mechanism so that relatively
simple protection topologies are generally better suited for this purpose than complex ones.
Ring protection schemes are in fact already quite complex. Note that a linear protection
topology can be used on various network structures, e.g. a network structure with a ring
topology.
In this report only linear protection topologies are discussed.

4.2 Linear Protection Switching

Terminology

In this report, protection switches will be called nodes and transport entities will be called
links1. In Figure 4-3 linear protection switching is shown for the 1:N architecture (explained
further on).

Two unidirectional links carrying the traffic of the same connection are called a pair or a
bidirectional link. Two nodes in a linear protection structure together with their
interconnecting working and protection links form a protection group. Naturally, the working
and protection links should have no links or nodes in common.

1 this is not to be confused with the link from the functional modelling method, as described in

paragraph 3.2

Chapter 4 Protection Switching

20

Selector Bridge

Null signal

{ }
{
{

}
}

Working pair 1

Working pair 2

Protection pair

Normal pair 1

Normal pair 2

Extra traffic

Normal links Working links Normal links

Node A Node B

Pair 1

Pair 2

Protection pair

Protection group

Figure 4-3 Linear Protection Switching

The links that carry traffic to and from the protection group, connecting the group to the rest
of the network, are called normal links. In a non-fail situation the traffic from the normal links
are transported over the corresponding working links. In case of a failure, a working link is
replaced by the protection link.

Paragraph 4.2 Linear Protection Switching

21

This is done by bridging the traffic of the corresponding normal link to the protection-link at
the source-side (considering the direction of the traffic) and selecting the traffic of the
protection link and feeding it to the correct normal link at the sink-side.

Note that links are normally bi-directional if not stated otherwise. A bi-directional link can also
be seen as two unidirectional links.

To make the protection switch settings more clear, the visualization as in Figure 4-4 is used.

Normal conditions Protection condition

Selector Bridge

Figure 4-4 A simpler way to visualize Linear Protection Switching

The bridge switches (‘bridges’) the traffic of one of the incoming normal links over the
protection link. Note that the bridged traffic is also fed to the corresponding working link, so
bridging copies the traffic and feeds it to the protection link.
The selector switches (‘selects’) the traffic of the protection link to one of the normal links. If
a normal is not selected, than it is fed with its corresponding working link.

The make specifications more readable, the links are numbered. In a protection group with N
normal links and thus also N working links, the following scheme is applied:
− the protection link is numbered 0
− the normal links and their corresponding working links are numbered 1 to N

Now we can indicate which link is bridged and selected by specifying their number. A situation
in which the link 1 is bridged and link 2 is selected is called a mismatch.
If no link is bridged, the bridge is said to be released and the protection link is carrying an null
signal (an empty signal). If no link is selected than the selector is said to be released and all
normal links are connected to their corresponding working links.

Architecture type

The architecture type can be either dedicated or shared.

A dedicated protection scheme provides a protection link that is dedicated to the protection of
a single working link. This is denoted as 1+1 protection. The normal link is said to be
permanently bridged to protection.

Chapter 4 Protection Switching

22

A shared protection scheme provides a protection link that is shared amongst more than one
working links. Obviously this scheme can only protect against one failing working link. This is
denoted as 1:N protection.

(A third protection scheme is M:N, i.e. there are M protection links to protect N working
links. This scheme is conceptually the same as 1:N and because it is of not so much practical
interest it is not discussed here)

One property of the 1:N architecture is, that it is also capable to transport ‘extra traffic’. Under
non-failure conditions, the protection link is available and is used to carry extra traffic. This
traffic is removed if any failure occurs. This feature can be quite profitable for the network
operator if there is most of the time no failure. With respect the indicated numbering scheme,
the extra-traffic link has the number N+1.

In Figure 4-5, the difference between the 1:N (N=1) architecture and the 1+1 architecture is
illustrated. In the 1+1 architecture no bridge is needed (the normal link is permanently bridged)
and extra traffic is not possible. This renders a much simpler structure than the 1:N
architecture.

Selector Bridge

Null signal

{
{

}
}

Working pair 1

Protection pair

Normal pair 1

Extra traffic

Selector

{ }
}

Working pair 1

Protection pair

1+1 Architecture

Normal pair 1

1:1 Architecture

Figure 4-5 Linear Protection Architecture Types

Paragraph 4.2 Linear Protection Switching

23

Comparison:
− The 1:N scheme (N>1) is offering a lower protection level than the 1+1 scheme, because

one protection link has to be shared with more working links.
− The 1+1 scheme is simpler that the 1:N scheme, because the bridge doesn’t have to be

controlled and consequently doesn’t have to match the selector’s setting at the other node.
− The 1+1 scheme has a higher cost, because every working link is protected by a protection

link. The 1:N scheme is more cost-efficient, especially if extra-traffic is allowed.

A special case of the 1:N scheme is 1:1 (N=1). Although it resembles the 1+1 scheme as it also
needs one protection link for a working link, it has the capability to carry extra-traffic.

An important difference between the 1+1 and 1:N schemes is that the 1:N scheme requires a
communication (telemetry) channel between the two ends of the protection link to coordinate
the protection switching operations and thus requires a protocol.

Switching type

The switching type can be unidirectional or bi-directional. Unidirectional switching is only
concerning protection switching in the direction of the failed working link. Of course there is
also protection switching in the other direction, but they are not coupled.
In bi-directional switching these ‘unidirectional switches’ are coupled. This means that if a
working link fails in one direction, then both this and the opposite direction of the same
working link are switched over protection.

Unidirectional Switching Bidirectional Switching

Figure 4-6 Linear Protection Switching Type

An important difference between the two switching types is that bi-directional switching
requires a communication (telemetry) channel to coordinate the protection switching
operations.

Operation type

The operation mode can either be revertive or non-revertive. In the revertive mode the traffic
carried by the protection link as switched back to the working link once the failure is cleared.
In the non-revertive mode the traffic is not switched back and remains over the same link as in
the previous failure situation.

In the revertive mode a wait-to-restore (WTR) timer is introduced, to reduce unnecessary
switching in situations where the condition of a link is changing relatively quick. Once the
failure is (or appears to be) cleared, a timer is started. Until the timer reaches the WTR-time,

Chapter 4 Protection Switching

24

the traffic remains carried over the protection link. After this time, the traffic is switched back
to the working link. In case a failure occurs within the wait-to-restore period, the WTR timer
is cleared, the previous link is released and the appropriate link is switched over protection.

The non-revertive mode is only applicable in the 1+1 case. It is used to reduce switching
operations. If the normal link is switched over protection, it is only switched (back) to the
working link, if protection has a worse condition than the working link.

4.3 Linear Protection Switching in SDH

In this paragraph the details and particularities of linear protection switching in the SDH
network are discussed. Some do not apply in SONET networks and many not in ATM
networks

Automatic Protection Switch channel

As mentioned in the previous section, both the 1:N protection scheme and the bi-directional
switching type require a communication (telemetry) channel to coordinate the protection
switching operations. In SDH such a channel is called APS1 channel. The coordination is
handled by the APS protocol, which is discussed in the next paragraph.

To accommodate an APS channel on network links, some bandwidth must be reserved in those
links. How this bandwidth is reserved is different for each network (layer).

Within SDH, an APS channel is defined in the multiplex section overhead (MSOH). So this
applies to the multiplex section layer. The specified APS fields are coded into two bytes that
are send in each MS frame (STM).

With in SDH, there is also bandwidth reserved in the path layers. In the path overhead (POH)
this the K3 byte. A definition of an APS channel in this allocation is not made (yet).
Although only one byte is allocated, which cannot contain all specified APS fields together, it
is still possible to define an APS channel, making use of a multi-frame method. The purpose of
method is to group several frames in a multi-frame and then to define a ‘new’ allocation of
bandwidth, making use of the allocated bandwidth per frame.
When for example the APS fields need two bytes and there is only one byte allocated in a
frame, a two frame multi-frame could solve the shortage.

Although an APS channel is possible on every link of the protection group, only the APS
channel definition on the protection link is used.

Within the APS channel the following fields are defined:
− Request Type (RT)
− Request Signal Number (RSN)
− Local Bridge Signal Number (LBSN)
− Architecture Indication (ARCH)

1 Automatic Protection Switching

Paragraph 4.3 Linear Protection Switching in SDH

25

The Request Type field transmits protection requests. They are presented in Table 4-1. The
Request Signal Number and Local Bridge Signal Number fields transmit numbers. Their
meanings are discusses further on this paragraph. The Architecture Indication field transmits an
indication of the architecture the sender is provisioned for.

Table 4-1 The protection switching request types

Request Type /
Process State

Name

LO Lock-Out of protection
FSw Forced Switch
SF-H Signal Fail, high priority
SF-L Signal Fail, high priority
SD-H Signal Degrade, low priority
SD-L Signal Degrade, low priority
MSw Manual Switch
WTR Wait-To-Restore
EXER Exercise
RR Reverse Request
DNR Do Not Revert
NR No Request
INV Invalid request

For SDH, several protection switching events are defined. Two kinds of these events are the
changing of the link conditions and the reception of external commands.

Link conditions

The link condition is a protection switching term for the status of a link on which a
protection switching action can occur. There are two kinds of link conditions:

• Signal Fail (SF) A hard failure caused by, e.g.:

− loss of signal
− loss of frame
− MS AIS (Alarm Indication Signal)

• Signal Degrade
(SD)

A soft failure caused by a performance degradation detected via
error detection code violation monitoring

Normally in protection switching, a link with a signal fail condition has higher priority than a
link with signal degrade condition. When an a link condition changes, a signal request
occurs within the protection process.

Chapter 4 Protection Switching

26

External commands

An external command can be given to a protection group by the network management via
the ECC channel (described in paragraph 3.3). The commands are:

Lock-out of protection (LO) requests to deny all signals to the protection link. This

disables the APS protocol and is needed to provision a
protection group.

Forced Switch #i (FSw-#i) requests to switch signal #i to protection. This command
has higher priority than the link conditions.

Manual Switch #i (MSw-#i) requests to switch signal #i to protection. This command
has lower priority than the link condition and is removed if
any signal request occurs.

Exercise #i (EXER-#i) request for an exercise to check responses on APS bytes
for normal signal #i. The switch is not actually completed.

Clear clear any switch commands listed above.

Protection process state

When the protection process has a SD, SF or an external command, which is not of higher
priority than the remote request in the bidirectional mode, then the corresponding request is
the state of the process. In any other case the process is in one of the following states:

No Request (NR) There is no local request and no remote request to react to.
Reverse Request (RR) Only applicable in the bidirectional mode:

The remote request is of higher priority than the local request.
Wait-To-Restore (WTR) Only applicable in the revertive mode:

The failed link has recovered, but the selection is kept for a
specific period.

Do-Not-Revert (DNR) Only applicable in the non-revertive mode:
The failed link has recovered, but the selection is kept until a new
request presents.

Trail and Subnetwork Connection protection

As discussed in paragraph 3.2, transport entities can be distinguished in trails and connections.
On both types of transport entities, linear protection can be applied.

They are called:

• Trail protection protects one or more trails with a protection trail
• SNC protection (SNCP) protection one or more SNCs with a SNC

When, for example, a trail starts and ends in different operator domains (as was shown in
Figure 3-7), then each operator would want to protect only that part that runs within his own
domain. SNC protection makes that possible.

Paragraph 4.3 Linear Protection Switching in SDH

27

Because a SNC is not terminated, there is no information available to monitor the status of the
SNC. However, there some monitor strategies to solve this problem:

Inherent monitoring (SNC/I) the status of the server link can be used to initiate

protection switching.
Non-intrusive monitoring (SNC/N) the subnetwork connection is directly monitored by

use of listen-only monitoring.
Intrusive monitoring the original trail is broken and a test trail is introduced,

that extends over the SNC. All information can be
monitored directly, but this is of no practical interest,
because it interferes with the transport.

Sublayer monitoring (SNC/S) A sublayer is introduced, which overwrites a portion
of the original trail’s capacity, such that the SNC can
be monitored directly, by a trail in the sublayer.

Another problem that results from the absence of termination of the SNC is the inability to
determine where a failure has occurred within the subnetwork. It could also have happened
before (upstream) the subnetwork. This problem is addressed in the following section.

Hold-off timer

The absence of termination in SNCP leads to some problems with the interworking of
protection schemes. Some situations are shown in Figure 4-7:

Staggered protection If a failure occurs within a SNCP group which is a part of one of

the connections of another SNCP group, the latter will also detect
this failure.

Partitioned protection If a failure occurs within a SNCP group, all the downstream
SNCP groups will also report this failure.

Differential delay
compensation.

If a failure occurs before (upstream) a SNCP group and one of its
connections reports the failure sooner than the other, then a
needless switch would be initiated.

Chapter 4 Protection Switching

28

Staggered Protection

Partitioned Protection

Differential delay

SNCP

SNCP

SNCP SNCP

(any) Protection

Figure 4-7 Interworking of protection schemes

A method to deal with these problems is the use of a hold-off timer. The hold-off time is
defined as the time between declaration of signal degrade or signal fail, and the initialization of
the protection switching algorithm.

In the staggered protection scheme, the surrounding SNCP should have a hold-off time greater
than the time it takes for the embedded SNCP to switch.

The partitioned protection problem is presumably solved, if all SNC groups use revertive
switching and if the working/protection link assignment is chosen correctly. One observation is
that if a link fails in a upstream SNC group, then both links in the a downstream SNC group
receive signal fail, so no switching is needed.

The differential delay problem can be solved, if the hold-off time is greater than the maximum
transport delay difference between the connections.

4.4 Automatic Protection Switch Protocol

The APS protocol coordinates the protection switching operation. It is also referred to as the
Multiplex Section Protection (MSP) protocol, because the APS channel is only defined in the
MS layer.

Paragraph 4.4 Automatic Protection Switch Protocol

29

In [Holz91] a protocol is defined as:

‘Sets of rules that govern the interaction of concurrent processes in distributed systems’

Clearly, the protection nodes are distributed and their processes run concurrently, though
synchronized by the APS messages. The counterpart of concurrent execution is sequential
execution, where only one process executes at a specific time.

With the APS channel it is possible to exchange information between the protection switching
nodes. This done by sending APS messages. APS messages are send over the APS channel. If
an APS message differs from the prior message, then it initiates a request.

SD,1,0

RR,0,1

APS channels

Protection
links

Working
links

Figure 4-8 APS messages

As explained in paragraph 4.3, there are four fields defined in the APS channel. The
architecture field is constant during the protection switching operation. The other field are
used in the protocol. Together they form the APS message:

APS = RT,RSN,LBSN

For example: in a 1:N case, if the request is SF on signal 1, and the current local bridge
selection is 0, then the send APS message would be: SF,1,0

The request type and the request signal number together form a request.

The request type is used in the bi-directional scheme to compare the local request against
the remote request. It is received as the remote request type. Depending on the priorities of
these two request, a node can send an reverse request (RR) message to indicate it accepted
the request or it can send it’s local request on which the remote node will reply Reverse
Request.

The request signal number is used to indicate which signal number is to be switched over
protection. It is received as the remote request signal number. It forms, together with the
request type, a request. If the protocol is stable, then this signal is bridged by the node that
received the request.

Chapter 4 Protection Switching

30

The local bridge signal number is used to reflect the current bridge selection of a node. It is
received as the remote bridge signal number. It is used by the remote node to determine
whether it should select a signal.

It only makes sense to select an signal if on the remote node the same signal number is bridged.
If the remote bridge signal number is different from the local request signal number, the
selector is temporary released. This is called temporary signal number mismatch.

Now the general operation of the APS protocol is discussed.

The purpose of the APS protocol is different for the two mentioned cases:
1:N architecture The signal that is to be selected at one node, must be bridged at

the other node. With use of the APS protocol, the node that is to
select a signal controls the remote bridge.

Bi-directional switching The selector at one node must have the same signal as the
selector at the other node.

In the 1:N bidirectional case, both mechanisms are used.

Note that the APS channel is facilitated on the protection link. If the protection link fails,
indicated by SF/0 (Signal Fail on link 0), then also the APS channel fails and the APS protocol
cannot work properly. The failure can be in one direction and the other direction can be
operational. This implies that protection switching is still possible in the operational direction,
but it can not be coordinated. This situation is only applicable in the 1:N unidirectional case.

So, we distinct two cases in linear protection switching in SDH:
• the case that the protection is not failing (but it can degrade, SD/0)
• the case of a local SF/0 situation or of a remote SF/0 request as received in an APS

message

Off course also in the SF/0 case, there must be exactly specified what the behaviour is.
Because of the fundamental difference between the cases, it is logical that the specification of
the two cases are described separately.

Paragraph 4.5 The ETSI ETS 300-417 Linear Protection Switching Specifications

31

The APS protocol is illustrated in an example.

The protection type in this example is 1:N bi-directional revertive, with N=2. In
Figure 4-9 the APS messages are shown in a message sequence chart (MSC). The
downward direction corresponds to increasing time.
Initially there is no failing condition and both nodes are sending ‘NR,0,0’ messages
continuously.
When node B detects a failure on link 1, it sends a ‘SF,1,0’ message, indicating a
request for link 1 with SF priority.
Node A has no higher priority requests and responds with ‘RR,1,1’, indicating it is
honoring the request and has set its bridge to 1.
Node B reacts on the reception of that message by selecting link 1 and sending a
‘SD,1,1’ message, indicating it has also set its bridge to 1.
Node A then also selects link 1 and the protection switch sequence is complete.

Node A Node B

NR,0,0NR,0,0

SF,1,0

RR,1,1

SF,1,1

SF on link 1

Both nodes have
no request.

Request link 1
Accept request
and set bridge to 1

Request accepted, select
link 1 and set bridge to 1

Remote bridge is
1, so select link 1.

Figure 4-9 Message flow in the APS protocol

4.5 The ETSI ETS 300-417 Linear Protection Switching
Specifications

The linear protection switching specification in the ETSI ETS 300-417 standard attempts to
capture the behaviour of all the discussed linear protection modes. The specification resides in
annex A of part 3-1 of the standard and is called ‘Generic specification of linear protection
switching operation’. It is mainly based on the ITU-T Recommendation G.783 and it attempts
to formalize the protection process specification to remove ambiguities present in G.783.

The specification is enclosed in annex A. An overview of the specification is presented here.

Chapter 4 Protection Switching

32

In general, the specification tries specify the behaviour of the protection switching node for
each event it can have. To achieve this specification, several aspects are introduced. The
definition of subprocesses, variables and states.

In both protection nodes the protection switching is accomplished by the protection process.
This process is divided into subprocesses as shown in Figure 4-10:

Signal Request converts the link conditions into a (signal) request type
External Request converts the external commands into a (external) request type
Local Request Priority determines the highest priority local request
APS Interpretation converts the APS message into a (remote) request type
Global Request
Priority

determines the highest (global) request type comparing the local
and remote requests

Local Bridge Control determines which of the signal is bridged to protection
Local Selector Control determines which of the signal is selected from protection
APS Generation converts the global request and the local bridge signal number into

an APS signal.

The local request of a node is the highest priority request when the signal requests and external
request are compared. The global request is the highest priority request when the local and the
remote request are compared. The remote request is the global request of the other node,
received via the APS channel.

Signal
Request

Local
Request
Priority

External
Request

Local
Bridge
ControlGlobal

Request
Priority Local

Selector
Control

APS
interpretation

APS
generation

External commands

Incoming APS
messages

Outgoing APS
messages

Signal
Request

......

Signal 0

Signal N

Line conditions

Figure 4-10 The subdivision of the protection process

Paragraph 4.5 The ETSI ETS 300-417 Linear Protection Switching Specifications

33

The division in subprocesses is made on the following observations.

Firstly, the protection process reacts on events. The three kinds of events are:
− a changing link condition
− an external command
− an incoming APS message.

Secondly, the protection process examines the local situation separately from the global
situation, which is the result of the comparison between the local and the remote situations.

And finally, the protection process has a state, as shown in Table 4-1 in paragraph 4.3.

The subprocesses communicate via variables. These variables are keeping data like: request
type (RT) and request signal number (RSN) for each processes.

The subprocesses themselves are specified in pseudocode. A fragment of the pseudocode in the
specification is shown in Figure 4-11. It is from the local request priority process, and
represents a loop in which the variables LRTnew, LRSNnew and LRsource are updated if the
condition of the ‘if’ statement holds.

Figure 4-11 A fragment of the ETSI specifications pseudocode

Pseudocode resembles the syntaxis of an imperative language like C or Pascal. It should be
noted, that pseudocode is not a formal language and can contain many ambiguities, for
example when ‘else’ is not specified in an ‘if-then’ statement.

In the specification every request is assigned a priority. The priority table is repeated here in
Table 4-2. This table is used in the Local Request and in the Global Request Priority processes.

1: for i==0 to n
2: do {find highest priority local request active}
3: if (LRTnew < SRT/i)
4: then LRTnew=SRT/i
5: LRSNnew=i
6: LRsource=signal
7: fi
8: od

Chapter 4 Protection Switching

34

Table 4-2 Request type priority

Priority Request Type Source
highest LO External command

| FSw External command
| SF-H Link condition
| SF-L Link condition
| SD-H Link condition
| SD-L Link condition
| MSw External command
| WTR Protection state
| EXER External command
| RR Protection state
| DNR Protection state
| NR Protection state

lowest INV Invalid state

‘INV’ is not an internal state to represent an invalid received request. It is not used in the
specification however.

As mentioned in paragraph 4.4, the APS channel is facilitated on the protection link. This
implies that a SF on protection (SF/0) is fatal for the protection protocol. In the ETSI
specification, this is expressed as the assignment of a higher priority of SF/0 than FSw. Note
that the external command ‘lockout of protection’ is always of highest priority, even in a
failing protection situation.

35

5 System Verification

Verifying system specifications call for methods and tools. The investigation of such methods
and tools is presented in this chapter. First an introduction in system verification is presented
and a verification tool investigation is performed (5.1). Then the verification tool SPIN (5.2)
and its modelling language PROMELA (5.3) are introduced. In 5.4 the practical and
theoretical simulation and validation operation of SPIN is discussed. Finally the approach of
modelling the ETSI specification in PROMELA is discussed (5.5).

5.1 Introduction in System Verification

Verifying system specifications means testing it to have absolute correct behaviour in all
possible situation that can occur, which requires the specification of correct behaviour.

In principal systems can be verified manually, but for larger and more complex systems this is
becoming increasingly difficult. This is especially true for concurrent systems, like computer
and telecommunication systems and protocols. An automated verification method is a must.
Correctness of protocols is discussed [Wal91] and more extensive in [Holz91].

In order to verify automatically, the use of the computer is needed and for that the system has
to be described formally. The formal description of the system requires a formal language, with
both a formal syntax and a formal semantics. A formal syntaxis describes the model in a precise
and unambiguous way. A formal semantics assigns a precise mathematical meaning to each of
the modelling primitives. See [PV97] for more information on this subject.

In addition to the formal modelling, a tool is needed that can execute this model and determine
its consistency and correctness. Generally, verification tools convert the system model into an
automaton or finite state machine. If the systems is bounded, the automaton is finite. Most of
the systems of interest are bounded.

Besides the description of the behaviour, the verification also needs a description of the correct
behaviour. These are also called correctness requirements. If all possible behaviour of the
system model satisfies these requirements, the model is said to be correct and the verification is
successful.

Properties of verification languages are:

• Concurrency Processes run unrelated to each other (this concept is always needed
in telecommunication systems)

• Synchronous /
Asynchronous
communication

Transmission and reception of signals between processes are at the
same time or can be at different times. The latter requires the
concept queue.

• Deterministic /
Non-deterministic

Identical stimuli to a system always invoke the same behaviour or
may invoke different behaviour.

• Time concept Physical or logical time can be modelled or only the order of events
can be modelled.

Chapter 5 System Verification

36

Furthermore, it is important that the language is understandable and intuitive and that the
verification tool is easy to use.

For the verification of the ETSI protection switching specifications some languages and tools
were investigated. A short summary is presented in Table 5-1.

Table 5-1 Modelling languages and tool description

Language Tool Opinion
PROMELA SPIN The language is very understandable, it supports all

mentioned properties. Time can only be modelled in a
limited way.
The tool is easy to use and validation power is good.

VHDL1 Speedchart,
FormalCheck

The language can be used for verification. It supports
most of the mentioned properties.
Speedchart supports entering design in multiple ways
(among other things, entering a FSM2).
FormalCheck can perform validations on VHDL
models.

C++ (home-made) The language is broadly used and understood. It
supports none of the mentioned properties, but
special libraries and methods can be developed to
catch up with that.

SDL3 SDT The language is standardized by the ITU and has a
broad application. It supports all mentioned features.
The tool SDT is capable of validating SDL systems.

These language and tools have been investigated:

SDL & SDT

This tool is widely used within Lucent for system specification. In SDT, SDL diagrams can be
entered, simulated and translated to C code, and also validations can be performed. But a
combination of SDL semantics and the SDT implementation makes this tool useless in cases
where a number of equal components are interconnected. This is e.g. the case when a protocol
between a number of network elements is investigated.

VHDL & FormalCheck

One reason to use VHDL as modelling language could be, that the verified model can easily be
used in hardware design. However, the actual benefit of this feature is still to be investigated.
The modelling power of VHDL is bounded by its semantic domain. A suitable state space

1 VHSIC Hardware Description Language, VHSIC is an acronym for Very High Speed

Integrated Circuits
2 Finite State Machine
3 System Description Language

Paragraph 5.2 The Model Checker SPIN

37

reduction mechanism is not provided in FormalCheck. Asynchronous communication must be
modelled explicitly, as well as non-determinism.
In my opinion, VHDL is not a good description language for formal checking, because too
much compromises must be made.

C++

A reason to use C++ as modelling language could be, that the verified model can easily be used
in software design. C++ is not at all a modelling language and does not support any of the
specified properties. The need to build all the required adjustments and tools to make it
suitable for specification and verification, is the reason that it will not be chosen.

SPIN

The choice of language and tool for verifying the ETSI specification is SPIN. Its language is
very clear and the validation power is very good. The only drawback is that both the input and
output is only textual. SPIN and its language are discussed in the next paragraphs.

5.2 The Model Checker SPIN

SPIN is a software package that supports the formal verification of concurrent systems. The
software was developed at Bell Labs in the formal methods and verification group.

SPIN has been used to trace logical design errors in distributed systems design, such as
operating systems, data communications protocols, switching systems, concurrent algorithms,
railway signaling protocols, etc. The tool checks the logical consistency of a specification. It
reports on deadlocks, unspecified receptions, flags incompleteness, race conditions, and
unwarranted assumptions about the relative speeds of processes.

To verify a design, a formal model is built using PROMELA1, SPIN's input language. SPIN is
an abbreviation of Simple PROMELA Interpreter. PROMELA is a non-deterministic language.
It contains the primitives for specifying asynchronous (buffered) message passing via channels,
with arbitrary numbers of message parameters. It also allows for the specification of
synchronous message passing systems (rendezvous). Mixed systems, using both synchronous
and asynchronous communications, are also supported.

The language can model dynamically expanding and shrinking systems: new processes and
message channels can be created and deleted on the fly. Message channel identifiers can be
passed from one process to another in messages.

Correctness properties can be specified as standard system or process invariants (using
assertions), or as general linear temporal logic requirements (LTL).

1 Process Meta Language

Chapter 5 System Verification

38

SPIN can be used in three basic modes:
• as a protocol simulator, allowing for rapid prototyping with a random, guided, or

interactive simulations
• as an exhaustive state space analyzer, capable of rigorously proving the validity of user

specified correctness requirements
• as a bit-state space analyzer that can validate even very large protocol systems with

maximal coverage of the state space (a proof approximation technique).

The SPIN software is written in ANSI standard C, and is portable across all versions of the
UNIX operating system. It can also be compiled to run on any standard PC running a
Windows95 operating system.

5.3 The Modelling Language PROMELA

PROMELA is a validation modelling language. It provides a vehicle for making abstractions of
protocols (or distributed systems in general) that suppress details that are unrelated to process
interaction. PROMELA programs consist or processes, message channels and variables.
Message channels and variables can be declared either globally or locally within a process.
Processes specify behavior, channels and global variables define the environment in which the
processes run.

Here a few details of the PROMELA language will be shown. For a more complete
description, one is referred to the annex C. The PROMELA language resembles the C
language in many (notational) aspects.

concurrency

To describe a protocol or a distributed system, the concept of concurrency is needed. In
PROMELA the processes are running concurrently and are communicating through channels
and global variables. Unless a synchronization mechanism between processes is implemented,
one cannot assume anything on the relative speeds of the processes.

One way to affect this concurrency, is to use the atomic keyword. If a sequence of statements
is enclosed and declared atomic, then this sequence is considered one indivisible unit, non-
interleaved with other processes. If a statement inside an atomic sequence is unexecutable the
process will get blocked, but if it is executable again it will continue atomically.

executability

An important aspect of PROMELA is executability. In PROMELA there is no difference
between conditions and statements, even isolated boolean conditions can be used as
statements. The execution of every statement is conditional on its executability. Statements are
either executable or blocked. The executability is the basic means of synchronization. A
process can wait for an event to happen by waiting to become executable. For instance, instead
of writing a busy wait loop:

while (a != b)
 skip

Paragraph 5.3 The Modelling Language PROMELA

39

one can achieve the same effect in PROMELA with the statement

(a==b)

A condition can only be executed (passed) when it holds. If the condition does not hold,
execution blocks until it does.

If a process is blocked, it can only execute again if its blocking cause is removed by another
process. When every process is blocked, that is no statement in the entire model is executable,
then a timeout occurs. This a special feature of PROMELA, making it possible to model an
escape from the normal program flow.
A special statement, called timeout is not executable while other statements are executable.
When a timeout occurs, the timeout statements becomes executable. The timeout statement is
typically used as a guard in a selection or repetition structure, to model a protocol timeout.

The following code sends a request to inform another process that is ready to receive packets,
it acknowledges every received packet and sends more requests when it takes to long:

Send_Request ;
do
:: Receive_packet -> Send_Ack
:: timeout -> Send_Request
od ;

The do::od repetition statement is discussed further on.

processes

The behavior of a process is defined in a ‘proctype’ declaration. It must be instantiated through
the run operator. Initially, one special process will be executed: the ‘init’ process, that must be
declared in every PROMELA specification.

channels

Message channels are used to model the transfer of data from one process to another. A
message declaration defines a name, a channel length and the message type. For instance:

chan qname = [16] of { short }

The channel qname can store up to 16 messages of type short. The statement

qname!expr

sends the value of expression expr to the channel, that is: it appends the value to the tail of the
channel (it can be seen as a queue). The statement

qname?msg

receives the message, it retrieves it from the head of the channel.

The send operation is executable only when the channel is not full. The receive operation,
similarly, is only executable when the channel is not empty.

Chapter 5 System Verification

40

In the above example, a channel was declared with a length greater than zero. This makes the
communication between the processes asynchronous. Which means that the sending of a
message from one process can be at another time than the receiving of the message by another
process.

If the length of the channel is chosen zero, then the communication is synchronous. In this case
the channel cannot store messages and the send and receive operation must occur at the same
time. This is also called rendezvous communication. With this construction a semaphore can be
build, for example blocking process A, until process B has reached a point.

non-determinism

Another special aspect of the PROMELA language is non-determinism. This is reflected in the
selection statement.
An example of the use of the selection statement is explained here:

if
:: (a != b) -> option1
:: (a == b) -> option2
fi

The selection contains one or more execution sequences, each preceded by a double colon.
Only one sequence from the list will be executed. A sequence can be selected only if its first
statement is executable. The first statement is therefore called a guard.

In the above example the guards are mutually exclusive, leading to a deterministic choice. If
more than one guard is executable, one of the corresponding sequences is selected non-
deterministically. If all guards are unexecutable, then the selection statement itself is
unexecutable.

The repetition statement is functionally the same, expect that it does not execute one sequence,
but it keeps executing sequences. It is possible to escape from this repetition by use of the
break or the goto statement:

do
:: (a<10) -> a++
:: else -> break
od ;

simulation output

It is possible (during a simulation) to write lines of text on the console in which SPIN is
running, with to printf statement. This provides a means to write specific information about
a certain state.

Paragraph 5.4 Simulating and Validating with SPIN

41

5.4 Simulating and Validating with SPIN

SPIN program control

SPIN is a commandline tool running in a UNIX shell or at a DOS commandshell. In the UNIX
environment the program is called ‘spin’, in the DOS environment ‘SPIN.EXE’. SPIN also
needs a standard C preprocessor available (CPP). SPIN uses CPP to preprocess the
PROMELA model. This enables the designer to use any C preprocessor command.

The typical program options are discussed. To simulate a PROMELA model in a file called
‘protocol.pro’ the following command is issued, where ‘>’ is the command prompt:

>spin protocol.pro

Several flags can be applied to change the SPIN program behaviour.

To validate a model, the following commands must be issued:

>spin -a protocol.pro

to create a set of files, which is the C source of a validator, tailored and optimized for the
specified model. One of these files is ‘pan.c’. This file must be compiled to create an
executable with:

>gcc -o pan pan.c

This generates the executable ‘pan’ (Protocol Analyzer). This program carries out the
validation and report the results. To the compilation and the execution of the protocol analyzer
also several options are available. One of the options controls the search strategy discussed in
this paragraph. The options are not discussed here, the reader is referred to annex C for the
details.

Execution sequences

The system behavior of a validation model is defined by all possible execution sequences it can
perform. An execution sequence is finite, ordered set of states. A state is completely defined by
the specification of all values for local and global variables, all control flow points of running
processes and the contents of all message channels.

In the begin state all variables are initialized to zero, all message channels empty, only the ‘init’
process is active and the control flow point is set the first statement in the ‘init’ process. All
statements that are executable in a given state, result in new states.

So the set of reachable states of a model is a finite state machine (FSM). A FSM is described
with states (nodes) and transitions (arrows) between the states. This could be visualized as in
Figure 5-1: a state tree, with extra properties: a tree in which loops and cross-connects, and
therefore multiple predecessors to a node, are allowed. With the root being the begin state and

Chapter 5 System Verification

42

the leaves the end states. Each path from the root to the leaves or cycling in a loop is an
execution sequence.

X

X

X X

Initial state

End states
Loop

Execution
sequence

Figure 5-1 Execution sequences

From a PROMELA viewpoint, there are two mechanisms that result in different execution
sequences:
• concurrency: the interleaving of executable statements from the running processes.
• non-determinism: the different choices that could be made at executable selection- or

repetition statements.

From the SPIN viewpoint (how SPIN processes the model), these are actually the same: at a
specific state, one of all executable statement is chosen.

Now the difference between simulation and validation can be made clear:
• In a simulation, one execution path is chosen.
• In a validation, each possible execution path is followed once.

With the SPIN tool, simulations are typically used to observe whether the model implements
the intended behavior, before a validation is started. As mentioned before, printf statements
can be used to write text to the console.

Validations are used to trace errors in the model. Therefore all states must be explored to
check for errors. This is also called exhaustive reachability analysis or state space search.

Correctness criteria

To verify a model, one must not only specify the behavior, one must also specify what the
correct result is. Therefore correctness criteria must be specified in the PROMELA model.
Correctness criteria are formalized as claims about the behavior of the model. In PROMELA,
claims are always formulated as behavior that is impossible, as opposed to formulation of
behavior that is inevitable.

Paragraph 5.4 Simulating and Validating with SPIN

43

These are ways to specify correctness criteria in PROMELA:
• the assertion, formulated with the assert statement, which is a claim that a boolean

condition must be satisfied at that point.
• the end-state label, to define proper end-states in non-terminating cycles: a intended non-

terminating cycle, is not a dead-lock.
• the progress-state label, to claim that the labeled state must always be passed in a

execution cycle. Execution sequences that violate this claim are called non-progress cycles.
• the acceptance-state label, to claim that the labeled state cannot be passed infinitely often

in a execution cycle. Execution sequences that violate this claim are called livelocks.
• formalization of general temporal claims. A temporal claim defines temporal orderings of

properties of states, such as ‘every state in which property P is true, is followed by a state
in which property Q is true’. Such a claim is implemented in PROMELA as a ‘never’ claim.

In simulations, only the assert statements are checked. The other claims can only be checked in
a validation.

One notorious error in protocols is the dead-lock. This is a situation, that two entities are
waiting for a service from each other, making it impossible to continue execution. This
situation could easily be detected with use of one or more claims. For example, by indicating
that the suspect state is not a valid end-state. More advanced claims could be formulated by
never-claims.

If an error is detected in a validation, a trace file is written, indicating the execution sequence
that lead to the error. Running the simulator in the guided mode, the simulation is guided
according to the trace (instead of making random choices) and the erroneous behavior can be
observed.

Validations in practice

An important issue in validation is the enormous number of states a model on a distributed
system can have. This is sometimes referred to as the state explosion problem. Even a modest
protocol can have millions of states. This makes an complete validation in most cases
impossible, but there are algorithms that can cope with this problem.

First two measures for expressing the capabilities of a reachability analysis are presented:
• Coverage, the search’s ability to reach states: the number of states tested divided by the

number of states in the full state space.
• Quality, the search’s ability to find errors: the number of distinct errors found divided by

the total number of errors present.

To rigorously prove the correctness of a model using an automated validation system, such as
SPIN, a full state space search is needed. The coverage and the quality are both 100%. But it
may not be possible. In general, when performing a task on a computer, there are the following
aspects:
− The speed of the calculations, i.e. the speed of the computer
− The size of the memory in which the calculations are performed
− The time that is needed to complete all calculations

Chapter 5 System Verification

44

An exhaustive analysis may be undesirable, because it could take to long or could detoriate
into a low-quality partial search if the memory is too small. The latter is explained: If the size
of the state space is R and the maximum available memory is A, both the coverage and the
search quality can only reach 100% when R<A. When R>A the coverage reduces to A/R, but
the search quality is likely to be worse. This is because only an ‘solid’ cut of the statespace is
reached and errors are likely to be distributed. See Figure 5-2.

X

X

X X

Initial state

End states
Loop

A subtree scanned after
memory has ran out

Figure 5-2 Low search quality

An example will illustrate the problem:
Consider a protocol with a total number of states in the order of 1012, which is a modest size
protocol. If we assume, quite unrealistically, that each state can be encoded in 1 byte of
memory and can be analyzed in 10-6 sec of CPU time, we would still need a machine with at
least 1000 Gbytes of memory, and would need roughly 12 days to perform an exhaustive
analysis.

There are two algorithms to improve the search quality in a limited memory area:
• the random simulation
• the controlled partial search
These are also called proof approximation techniques.

The random simulation technique is largely independent of the size and complexity of the
system; even infinite size systems can be explored. The search is completely random and there
is no record whether an execution sequence is explored before. This technique gives no
measure of the coverage nor the search quality, and is therefore only used as a last resort.

Paragraph 5.4 Simulating and Validating with SPIN

45

A controlled partial search aims to achieve the best result within a limited memory area. A
controlled partial search has the following objectives:
− To analyze precisely A states, with A=M/S. M is the amount of memory that is available

for the search. S is the memory needed to store one state.
− To select these A states from the complete set of reachable states R in such a way that all

major protocol functions are tested.
− To select the A states in such way that the search quality is better than the coverage A/R

Supertrace algorithm

The technique that SPIN uses to implement a controlled partial search is called the supertrace
algorithm or the bit state space analysis. A short overview of this technique will be presented:

The supertrace technique is based on a storage technique called hashing. A hash function
projects a value onto an arbitrary hash-value in a range 0..H-1, in such way that the same value
is always projected onto the same hash-value. This is shown in Figure 5-3.
There is also a possibility that two different values project onto the same hash-value. This is
called a hash-conflict.

0

H-1

H

0

R-1

Figure 5-3 The hash function projection

This characteristic is used to implement the partial search algorithm. Each state is projected
onto one bit of memory. The value of this bit determines whether the state should be analyzed
or not. If more than one state project onto a bit, then the one analyzed first sets the bit and all
the other states that project onto this bit, are not analyzed; the search subtree is pruned. This
causes the search to be partial controlled. See Figure 5-4.

Chapter 5 System Verification

46

X

X

X
Loop

X

Initial state

End states

Figure 5-4 Partial Search

Note that the term random is somewhat ambiguous, when talking about random selections.
Although the selection is arbitrary, it is also reproducible, because every simulation or
validation the hash function is the same.

A indication of the coverage of a bit state space analysis is the hash-factor. A hash-factor near
1 implies a poor coverage, a high number (more than 100) a good coverage. A hash factor
(much) greater than 100 corresponds with a coverage over 99.9%

A very convenient side-effect of the hashing technique, is that the number of hash-conflict is
controllable. This can be done by specifying the size of the hash table. This corresponds to
specifying the memory area available to the validation.

In Table 5-2, an example with a model with 334.151 reachable states demonstrates the
correlation between the hash factor and the coverage. Note the last line: the exhaustive analysis
degrades to an uncontrolled partial search with poor coverage if the memory area is to small.
The coverage of the supertrace search in the same area is much better.

Table 5-2 Correlation between Hash Factor and Coverage

Search Hash-factor States stored Hash collisions Memory used Coverage
Exhaustive - 334.151 66.455 45.6 MB 100.00 %
Supertrace 100.9 332.316 1.835 9.9 MB 99.45 %
Supertrace 50.9 329.570 4.581 7.9 MB 98.62 %
Supertrace 25.7 326.310 7.841 6.9 MB 97.65 %
Supertrace 13.0 322.491 11.660 6.3 MB 96.51 %
Exhaustive - 83.961 389.671 6.3 MB 25.12 %

Paragraph 5.5 The ETSI Specifications modelled in PROMELA

47

5.5 The ETSI Specifications modelled in PROMELA

Investigation

Before modelling the ETSI specifications in PROMELA, an investigation is done how the
process specification map into the PROMELA features. Here is a summary:

∗ The PROMELA processes run concurrently. The ETSI protection processes also run
concurrently, but the subprocesses do not. The execution order between the subprocesses is
always the same, modelling the subprocesses in PROMELA processes and linking them with
channels would be a waste of time (both in modelling time as in simulation and validation
time). Instead of this, the subprocesses are modelled as blocks of code, all belonging to one
process, jumped to and from with goto statements.

∗ The APS channel can be modelled perfectly with PROMELA channels. But how can the
changing of the link condition and the external commands be modelled? For this purpose
channels are used. Each protection node monitors the condition of the incoming links. For each
incoming line a channel is declared which transport NR, SD, or SF messages to model the
notification of a new link condition. Now, all event are modelled as incoming messages on
PROMELA channels.

∗ The protection process is idle if the APS channel is idle, that is if the same APS message is
sent repeatedly. While the APS protocol is executing, messages flow over the APS channel. If
the protocol has finished, the APS channel is idle again. This is modelled as follows: At the
beginning of the PROMELA protection process, execution is halted until a message is received
on a channel. If a message is received and if it is different from the previous message,
execution is jumped to the corresponding subprocess block. After execution of all relevant
code, an APS message is send and the process is blocked again, waiting for the next event.

∗ All the Pseudocode statements and data types map (sufficiently) good onto PROMELA
statements and data types. In Figure 5-5 some examples of this mapping is shown.

Chapter 5 System Verification

48

Pseudocode PROMELA code equivalent
‘if statement’

1: if (count==last)
2: then count = 0
3: else count = count + 1
4: fi

1: if
2: :: (count==last) ->
3: count = 0
4: :: else ->
5: count = count + 1
6: fi ;

‘for statement’

1: for i=0 to n
2: do sum = sum + number[I]
3: od

1: i := 0
2: do
3: :: (i>n) ->
4: break
5: :: else ->
6: sum = sum + number[i] ;
7: i++
8: od ;

Figure 5-5 The mapping of the pseudocode onto PROMELA

Implementation

The PROMELA model of the protection switching specifications is included in annex B. Here
an overview is given. In Figure 5-6 a fragment of the PROMELA code is shown that
corresponds to the fragment of pseudocode in Figure 4-11.

Figure 5-6 A fragment of the PROMELA model of the ETSI specifications

The blocks that divide the process into the subprocesses map exactly onto the subprocesses
described in paragraph 4.5. They are shown in Figure 5-7. The blocks are summarized in Table
5-3.

1: i = 0 ;
2: do
3: :: i>Nmax -> break /* All signals processed */
4: :: else ->
5: if
6: :: (srt[i] > lrtnew) ->
7: lrtnew = srt[i] ;
8: lrsnnew = i ;
9: lrsource = SOURCE_SIGNAL
10: :: else -> skip
11: fi ;
12: i++ ;
13: od ;

Paragraph 5.5 The ETSI Specifications modelled in PROMELA

49

Table 5-3 The labels of the code of the subprocesses

Block Next block jumped to
waitmsg depending on the msg to:

apsin,
extern or signalrequest

apsin global
extern local
signalrequest local
local (next)
global (next)
bridge (next)
selector (next)
transmit waitmsg

Node 1 Node 2

Sequential simulatorInit

Eventqueue

Line conditions
channels

External
command
channels

APS channels

Interface
model/test
environment

Figure 5-7 The PROMELA model of the ETSI specifications

Just before the transmission of the APS message in the TRANSMIT block the status is printed
to console using the ‘printf’ command. The APS message that is send is printed, together with
the current bridge and selector setting. This is enough information to make a decision whether
the behaviour of the protection processes is correct.

Eventqueue

As mentioned in paragraph 5.3, a timeout occurs if no statement in the PROMELA model is
executable. This PROMELA feature is gratefully used in this model. If the protocol has
finished executing, observed by the fact that the APS channel is idle, then a timeout occurs.
This timeout is used by another process in the model, called sequential_simulator.

Chapter 5 System Verification

50

This process is defined for programming convenience, it could also have been coded inside the
init process. It reads events from a channel called event_queue, sends the event to the
appropriate process and wait for a timeout to occur. When the timeout occurs, the next event
is read. This is repeated until the event queue is empty, then the execution of the complete
model stops.

The init process fills the event_queue with events, executes the processes and stops. The
events that are inserted in the event queue are link condition and external command events plus
a marking for which protection node it is meant.

When the protocol has finished executing and before the next event is read, the correctness
rules are applied. Assert statements are enough to describe the correctness of the protocol. If
an assertion is false, then in both the simulation and validation case the executions is stopped
and the false assertion is notified.

In the simulation mode, these events are explicitly programmed in the init process. In the
validation mode another process is used. A process called random fills the event queue with
three events chosen from all the events that are defined.

Modelling time in PROMELA

The concept time is not present in PROMELA, other than the timeout condition, discussed in
paragraph 5.3.

Time can be modelled in several forms, for example:
− Time is expressed in the physical time unit, i.e. seconds (milliseconds, nanoseconds, etc.),
− Time is expressed in logical units, e.g. clock ticks,
− Time is expressed in a condition, which indicates relative order to another time instant. (e.g.

time A is after time B).

Without any time concept it is impossible to verify hold-off timing problems as discussed in
paragraph 4.3. Inspired by this problem a method is designed to model time in PROMELA.
The PROMELA code is supplied in annex D.

The methods uses logical units to express time. It consists of one process, a global variable
‘time’ and a set of preprocessor functions.

The process increments the global variable ‘time’ with one when a timeout occurs. Processes
can check the current time and wait for a specific time by setting timers.

The only implication of the method used here, is that it only works if no other process uses the
timeout condition. This is no problem if such a process can also use the method supplied time
functions.

Although, the hold-off problems are not actually verified in this research, the method has been
used to model hold-off timing and appeared to be sufficient.

51

6 ETSI Specification Verification

In this chapter the findings of the verification of the ETSI specifications are discussed. First an
overview is given what simulation and validation results with SPIN look like (6.1). In 6.2 all
findings are discussed that are clearly traceable in the specification and possible corrections are
proposed. Finally in 6.3 some open issues are discussed, that need future attention.

6.1 Simulation and Validation Output

Simulation output

When simulating with SPIN, the only output is lines of text. As mentioned in paragraph 5.5,
the PROMELA model of the ETSI specifications has output that contains the following
information:
• the APS message that is send,
• an indication which nodes send it,
• the current bridge setting of that node,
• the current selector setting of that node.

The simulation output is shown in an example in Figure 6-1.

Chapter 6 ETSI Specification Verification

52

Figure 6-1 The PROMELA model simulation output

The formatting is designed to make the output maximally readable. The creation of an event is
shown on lines starting with ‘###’. The consecutive behaviour can be read from the lines
starting with ‘#’. The column ‘APS 1->2’ the APS messages from node 1 to node 2 are
displayed and the other way around in column ‘APS 2->1’. The columns ‘LSSN’ and ‘LBSN’
reflect the settings of the selector and the bridge respectively for node 1 (left) and node 2
(right).
Before any event is created, both nodes are initialized (lines 7-9). When the protocol is stable,
the settings can be compared to the desired behaviour, e.g. line 14.

The printed information is enough to determine errors, because there is no more than the
setting of the bridge and selector and the initiating event. Information about the APS protocol
behaviour is (very) convenient, but not necessary. Once an error is observed, it is often not
difficult to locate the source in the model.

1: # Remark:
2: # Parameters ETSInode(1): 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
3: # Parameters ETSInode(2): 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
4: # |----|----|----------|----------|----|----|
5: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
6: # |----|----|----------|----------|----|----|
7: # | 0 | 0 | NR ,0,0 > | 0 | 0 |
8: # | 0 | 0 | < NR ,0,0 | 0 | 0 |
9: # |----|----|----[initialized]----|----|----|
10: ### Node 1, command SD for signal 1
11: # | 0 | 0 | SDL ,1,0 > | 0 | 0 |
12: # | 0 | 0 | < RR ,1,1 | 0 | 1 |
13: # | 1 | 1 | SDL ,1,1 > | 0 | 1 |
14: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
15: ### Node 1, command NR for signal 1
16: # | 1 | 1 | WTR ,1,1 > | 1 | 1 |
17: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
18: ### Node 1, command TO
19: # | 0 | 1 | NR ,0,1 > | 1 | 1 |
20: # | 0 | 1 | < NR ,0,0 | 0 | 0 |
21: # | 0 | 0 | NR ,0,0 > | 0 | 0 |
22: # | 0 | 0 | < NR ,0,0 | 0 | 0 |
23: ### Node 2, command SD for signal 2
24: # | 0 | 0 | < SDL ,2,0 | 0 | 0 |
25: # | 0 | 2 | RR ,2,2 > | 0 | 0 |
26: # | 0 | 2 | < SDL ,2,2 | 2 | 2 |
27: # | 2 | 2 | RR ,2,2 > | 2 | 2 |
28: ### Node 1, command SF for signal 1
29: # | 0 | 2 | SFL ,1,2 > | 2 | 2 |
30: # | 0 | 2 | < RR ,1,1 | 0 | 1 |
31: # | 1 | 1 | SFL ,1,1 > | 0 | 1 |
32: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
33: ### Node 1, command NR for signal 1
34: # | 1 | 1 | WTR ,1,1 > | 1 | 1 |
35: # | 1 | 1 | < SDL ,2,1 | 0 | 1 |
36: # | 0 | 2 | RR ,2,2 > | 0 | 1 |
37: # | 0 | 2 | < SDL ,2,2 | 2 | 2 |
38: # | 2 | 2 | RR ,2,2 > | 2 | 2 |
39: ### Node 2, command NR for signal 2
40: # | 2 | 2 | < WTR ,2,2 | 2 | 2 |
41: # | 2 | 2 | RR ,2,2 > | 2 | 2 |
42: ### Node 2, command TO
43: # | 2 | 2 | < NR ,0,2 | 0 | 2 |
44: # | 0 | 0 | NR ,0,0 > | 0 | 2 |
45: # | 0 | 0 | < NR ,0,0 | 0 | 0 |
46: # | 0 | 0 | NR ,0,0 > | 0 | 0 |
47: #processes: 4

Paragraph 6.1 Simulation and Validation Output

53

Validation output

Also in the validation mode SPIN produces text as output. If a validation is run and no
error is found the following output can be observed. In Figure 6-2 the result of an exhaustive
search is presented.

Figure 6-2 SPIN validation output in Full statespace search

The model is extremely small (line 11: 21 states) and only inserted here to show the typical
output of a validation in full statespace search mode. As line 5 to 8 show, there is only
searched for assertion violations and invalid endstates. That is because only assertion are used
for the correctness rules. The latter is turned on by default.

In Figure 6-3 the result of a supertrace search is shown.

Figure 6-3 SPIN validation output in Bit statespace search

1: (SPIN Version 2.9.6 -- 20 March 1997)
2: + Partial Order Reduction
3:
4: Full statespace search for:
5: never-claim - (none specified)
6: assertion violations +
7: cycle checks - (disabled by -DSAFETY)
8: invalid endstates +
9:
10: State-vector 20 byte, depth reached 13, errors: 0
11: 21 states, stored
12: 1 states, matched
13: 22 transitions (= stored+matched)
14: 1 atomic steps
15: hash conflicts: 0 (resolved)
16: (max size 2^18 states)
17:
18: 1.493 memory usage (Mbyte)
19:
20: unreached in proctype proc
21: (0 of 10 states)
22: unreached in proctype :init:
23: (0 of 4 states)

1: (SPIN Version 2.9.6 -- 20 March 1997)
2: + Partial Order Reduction
3:
4: Bit statespace search for:
5: never-claim - (none specified)
6: assertion violations +
7: cycle checks - (disabled by -DSAFETY)
8: invalid endstates +
9:
10: State-vector 308 byte, depth reached 1492, errors: 0
11: 2.48408e+06 states, stored
12: 486535 states, matched
13: 2.97061e+06 transitions (= stored+matched)
14: 7.35219e+06 atomic steps
15: hash factor: 13.5078 (expected coverage: >= 98% on avg.)
16: (max size 2^25 states)
17:
18: Stats on memory usage (in Megabytes):
19: 775.032 equivalent memory usage for states (stored*(State-vector + overhead))
20: 4.194 memory used for hash-array (-w25)
21: 0.280 +memory used for DFS stack (-m10000)
22: 0.163 +memory used for other data structures
23: 8.873 =total actual memory usage

Chapter 6 ETSI Specification Verification

54

This model is somewhat larger (line 12: two and a half million states). For this validation a
partial search is used. As shown in line 10, the state-vector size is 308 byte. If this value is
multiplied with the number of states, then the equivalent memory usage is obtained as in line
19.

What is more important, is the value of the hash factor (line 15). The value of 13.5
corresponds with an estimated coverage of 98%. Although this may seem a good value, this is
not satisfactory for a verification, because 2% unsearched states is large enough to worry
about unseen errors. As mentioned in paragraph 5.4, a hash factor (much) greater than 100 (a
estimated coverage greater than 99,9%) would be a better indication that the model is nearly
fully verified. For that, another validation with other parameters is needed.

6.2 Verification results

When simulating and validating the ETSI specifications, several errors and findings were
observed. They are discussed in this paragraph. Every subject is started with an introduction.
Then the location in the ETSI pseudocode is pointed out and when possible a suggestion is
done that corrects the problem.

6.2.1 Reverse Request is replied with Reverse Request

This error only applies to the bidirectional case.

It occurred after all failures have cleared and the last requesting node sends NR (in the
revertive case after a WTR timeout, in the non-revertive case only if the last switch concerned
protection): The remote node should reply NR, but it replies RR.

This was originally specified in the textual part of the G.783 standard, but it was not specified
in the item list of this document. Through this mistake it was not specified in the ETSI
standard.

The incorrect behaviour is shown in Figure 6-4. In Figure 6-5 a correction in the source is
presented.

Figure 6-4 Reverse Request is replied with Reverse Request: Incorrect behaviour

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command SD for signal 1
6: # | 0 | 0 | SDL ,1,0 > | 0 | 0 |
7: # | 0 | 0 | < RR ,1,1 | 0 | 1 |
8: # | 1 | 1 | SDL ,1,1 > | 0 | 1 |
9: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
10: ### Node 1, command NR for signal 1
11: # | 1 | 1 | WTR ,1,1 > | 1 | 1 |
12: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
13: ### Node 1, command TO
14: # | 0 | 1 | NR ,0,1 > | 1 | 1 |
15: # | 0 | 1 | < RR ,0,0 | 0 | 0 |
16: # | 0 | 0 | NR ,0,0 > | 0 | 0 |
17: # | 0 | 0 | < RR ,0,0 | 0 | 0 |

Paragraph 6.2 Verification results

55

Figure 6-5 Reverse Request is replied with Reverse Request: Correction in code

6.2.2 Forced switch has higher priority than SF on protection

This problem only applies to the case an APS channel is used.

A signal fail request for protection should have a higher priority than a forced switch request
when the APS channel is used, but this is not specified in the code.

The incorrect behaviour is shown in Figure 6-6. Note that an APS message can not be received
when the protection link is failing. This can be observed in the figure by the fact that there is no
reply from node 1 after lines 3 and 5.
In Figure 6-7 a correction in the source is presented.

Figure 6-6 Forced switch has higher priority than SF on protection: Incorrect behaviour

Original code (in global request priority process)

1: Global request priority process
2: -------------------------------
3: if (SWtype==bi-directional) and (SRT/0!=SF) and (RRT!=RR) and
4: [(RRT>LRT) or
5: ((RRT==LRT) and (GRT==RR)) or
6: ((RRT==LRT) and (GRT!=RR) and (RRSN<LRSN))
7:])
8: then GRT=RR
9: GRSN=RRSN
10: else GRT=LRT
11: GRSN=LRSN
12: fi

Corrected code

1: Global request priority process
2: -------------------------------
3: if (SWtype==bi-directional) and (SRT/0!=SF) and (RRT!=RR) and
4: [(RRT>LRT) or
5: ((RRT==LRT) and (RRT!=NR) and (GRT==RR)) or
6: ((RRT==LRT) and (RRT!=NR) and (GRT!=RR) and (RRSN<LRSN))
7:])
8: then GRT=RR
9: GRSN=RRSN
10: else GRT=LRT
11: GRSN=LRSN
12: fi

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command SF for signal 0
6: # | 0 | 0 | SFL ,0,0 > | 0 | 0 |
7: # | 0 | 0 | < RR ,0,0 | 0 | 0 |
8: ### Node 1, command FSw for signal 1
9: # | 0 | 0 | FSw ,1,0 > | 0 | 0 |
10: # | 0 | 0 | < RR ,1,1 | 0 | 1 |

Chapter 6 ETSI Specification Verification

56

Figure 6-7 Forced switch has higher priority than SF on protection: Correction in code

6.2.3 Forced switch is not removed at SF on protection

This problem only applies to the case an APS channel is used.

A signal fail on protection must remove the external command FSw, if an APS channel is used.
When the external request is denied it must be forgotten. After the SF condition on protection
has cleared, the external command was still active.

This was specified in the text of the specification, but not correctly specified in the code.
The incorrect behaviour is shown in Figure 6-8. In Figure 6-9 a correction in the source is
presented.

Figure 6-8 Forced switch is not removed at SF on protection: Incorrect behaviour

Original code (in local request priority process)

1: for i=0 to n
2: do if (LRTnew < SRT/i)
3: then LRTnew=SRT/i
4: LRSNnew=i
5: LRsource=signal
6: fi
7: od

Corrected code

1: for i=0 to n
2: do if (LRTnew < SRT/i)
3: then LRTnew=SRT/i
4: LRSNnew=i
5: LRsource=signal
6: fi
7: od
8: if (LRTnew==FSw) and (SRT/0==SF) and (APSmode=true)
9: then LRTnew=SF
10: LRSNnew=0
11: LRsource=signal
12: fi

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command FSw for signal 1
6: # | 0 | 0 | FSw ,1,0 > | 0 | 0 |
7: # | 0 | 0 | < RR ,1,1 | 0 | 1 |
8: # | 1 | 1 | FSw ,1,1 > | 0 | 1 |
9: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
10: ### Node 1, command SF for signal 0
11: # | 0 | 0 | SFL ,0,0 > | 1 | 1 |
12: # | 0 | 0 | < RR ,0,0 | 0 | 0 |
13: ### Node 1, command NR for signal 0
14: # | 1 | 1 | FSw ,1,1 > | 0 | 0 |
15: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
16: # | 1 | 1 | FSw ,1,1 > | 1 | 1 |

Paragraph 6.2 Verification results

57

Figure 6-9 Forced switch is not removed at SF on protection: Correction in code

6.2.4 DNR is not cleared after RR

This problem only applies to the non-revertive mode.

When there is no request, the previous selection must be maintained. The process state must be
NR if protection is selected and DNR if the working link is selected. A DNR is replaced when
a remote request occurs and consequently a RR is issued. The DNR state should be forgotten,
but the DNR state is issued again when it is the highest priority.

The incorrect behaviour is shown in Figure 6-10. In Figure 6-11 a correction in the source is
presented.

Figure 6-10 DNR is not cleared after RR: Incorrect behaviour

Original code (in external request process)

1: wait until CTimer is expired
2: then if (ERT==FSw) and not[((GRT=ERT) or (GRT=RR)) and (GRSN==ERSN)]
3: then ERT=NR
4: ERSN=0
5: fi
6: if ..
7: fi
8: ..
9: tiaw

Corrected code

1: wait until CTimer is expired
2: while (ERT!=NR)
3: do if not[((GRT=ERT) or (GRT=RR)) and (GRSN==ERSN)]
4: then ERT=NR
5: ERSN=0
6: fi
7: od

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command SD for signal 1
6: # | 0 | 1 | SDL ,1,0 > | 0 | 1 |
7: # | 0 | 1 | < RR ,1,1 | 0 | 1 |
8: # | 1 | 1 | SDL ,1,1 > | 0 | 1 |
9: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
10: ### Node 1, command NR for signal 1
11: # | 1 | 1 | DNR ,1,1 > | 1 | 1 |
12: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
13: ### Node 2, command SD for signal 0
14: # | 1 | 1 | < SDL ,0,1 | 0 | 1 |
15: # | 0 | 1 | RR ,0,0 > | 0 | 1 |
16: # | 0 | 1 | < SDL ,0,0 | 0 | 1 |
17: # | 0 | 1 | RR ,0,0 > | 0 | 1 |
18: ### Node 2, command NR for signal 0
19: # | 0 | 1 | < NR ,0,0 | 0 | 1 |
20: # | 0 | 1 | DNR ,1,0 > | 0 | 1 |
21: # | 0 | 1 | < RR ,1,1 | 0 | 1 |
22: # | 1 | 1 | DNR ,1,1 > | 0 | 1 |
23: # | 1 | 1 | < RR ,1,1 | 1 | 1 |

Chapter 6 ETSI Specification Verification

58

Figure 6-11 DNR is not cleared after RR: Correction in code

6.2.5 SF on protection does not remove SF for a working link

This problem only applies to the case an APS channel is used.

It is specified that a signal request does not remove a current signal request if it has the same
priority. Although not specified, a signal fail on protection must remove another signal fail
request.

The incorrect behaviour is shown in Figure 6-12. In Figure 6-13 a correction in the source is
presented.

Figure 6-12 SF on protection does not remove SF for a working link: Incorrect behaviour

Original code (in local request priority process)

1: if (LRTnew==NR)
2: then if (OPERtype==non-revertive)
3: then if (LRSN==1)
4: then LRT=DNR
5: else LRT=NR
6: fi
7: else ..

Corrected code

1: if (LRTnew==NR)
2: then if (OPERtype==non-revertive)
3: then if (GRSN==1)
4: then LRT=DNR
5: else LRT=NR
6: LRSN=0
7: fi
8: else ..

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command SF for signal 1
6: # | 0 | 0 | SFL ,1,0 > | 0 | 0 |
7: # | 0 | 0 | < RR ,1,1 | 0 | 1 |
8: # | 1 | 1 | SFL ,1,1 > | 0 | 1 |
9: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
10: ### Node 1, command SF for signal 0
11: # | 0 | 0 | SFL ,1,0 > | 1 | 1 |
12: # | 0 | 0 | < RR ,1,1 | 0 | 1 |

Paragraph 6.2 Verification results

59

Figure 6-13 SF on protection does not remove SF for a working link: Correction in code

6.2.6 Absent code for dropping WTR

It is specified that the process state WTR should be dropped and the associated timer cleared,
when any request occurs. This is not specified in the code.

The incorrect behaviour is shown in Figure 6-14. In Figure 6-15 a correction in the source is
presented.

Figure 6-14 Absent code for dropping WTR: Incorrect behaviour

Original code (in local request priority process)

1: if (LRTnew==NR)
2: ..
3: else if (LRsource==external)
4: then LRT=LRTnew
5: LRSN=LRSNnew
6: else if (LRTnew!=LRT)
7: then LRT=LRTnew
8: LRSN=LRSNnew
9: else ..
10: fi

Corrected code

1: if (LRTnew==NR)
2: ..
3: else if (LRsource==external)
4: then LRT=LRTnew
5: LRSN=LRSNnew
6: else if (LRTnew!=LRT) or (SRT/0==SF and APSmode==true)
7: then LRT=LRTnew
8: LRSN=LRSNnew
9: else ..
10: fi

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command SD for signal 1
6: # | 0 | 0 | SDL ,1,0 > | 0 | 0 |
7: # | 0 | 0 | < RR ,1,1 | 0 | 1 |
8: # | 1 | 1 | SDL ,1,1 > | 0 | 1 |
9: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
10: ### Node 1, command NR for signal 1
11: # | 1 | 1 | WTR ,1,1 > | 1 | 1 |
12: # | 1 | 1 | < RR ,1,1 | 1 | 1 |
13: ### Node 2, command SD for signal 2
14: # | 1 | 1 | < SDL ,2,1 | 0 | 1 |
15: # | 0 | 2 | RR ,2,2 > | 0 | 1 |
16: # | 0 | 2 | < SDL ,2,2 | 2 | 2 |
17: # | 2 | 2 | RR ,2,2 > | 2 | 2 |
18: ### Node 2, command NR for signal 2
19: # | 2 | 2 | < WTR ,2,2 | 2 | 2 |
20: # | 2 | 2 | RR ,2,2 > | 2 | 2 |
21: ### Node 2, command TO
22: # | 2 | 2 | < NR ,0,2 | 0 | 2 |
23: # | 0 | 0 | WTR ,1,0 > | 0 | 2 |
24: # | 0 | 0 | < RR ,1,1 | 0 | 1 |
25: # | 1 | 1 | WTR ,1,1 > | 0 | 1 |
26: # | 1 | 1 | < RR ,1,1 | 1 | 1 |

Chapter 6 ETSI Specification Verification

60

Figure 6-15 Absent code for dropping WTR: Correction in code

6.3 Open issues

Some observations of the behaviour of the ETSI specification could not fully be investigated
within the graduation project. They are listed in this paragraph and possible adjustments to the
source is proposed.

6.3.1 Selector is released at SF on protection

This item only applies to the 1:N unidirectional case.

If protection fails in one direction, then protection in this direction is of no use and the
corresponding selector and bridge must release. Protection in the opposite direction is still
possible. But as also the APS channel is broken in the failing direction, no bridge control is
possible and the corresponding selector and bridge (opposite direction) should freeze.

A part of this was specified in the G.783 standard and adopted straight in the ETSI standard:
the freezing of the bridge was specified, but the specification of the freezing of the selector is
absent.

When one protection link is already failing, the question is: what must happen when also the
other protection fails. The behaviour as specified in the ETSI specification is shown in Figure
6-16.

Figure 6-16 Selector is released at SF on protection

Added code (after original code in local request priority process)

1: while (LRT==WTR) or (LRT==DNR)
2: do
3: if (LRT==WTR)
4: then if (WTRtimer==0) or (GRT!=WTR)
5: then LRT=NR
6: if (EXTRAtraffic==true)
7: then LRSN=Nmax+1
8: else LRSN=0
9: fi
10: fi
11: fi
12: if (LRT==DNR) and (GRSN!=1)
13: then LRT=NR
14: LRSN=0
15: fi
16: od

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: ### Node 1, command SD for signal 1
6: # | 0 | 0 | SDL ,1,0 > | 0 | 0 |
7: # | 0 | 0 | < NR ,0,1 | 0 | 1 |
8: # | 1 | 0 | SDL ,1,0 > | 0 | 1 |
9: ### Node 2, command SF for signal 0
10: # | 1 | 0 | < SFL ,0,1 | 0 | 1 |
11: # | 1 | 0 | SDL ,1,0 > | 0 | 1 |
12: ### Node 1, command SF for signal 2
13: # | 0 | 0 | SFL ,2,0 > | 0 | 1 |
14: # | 0 | 0 | < SFL ,0,1 | 0 | 1 |

Paragraph 6.3 Open issues

61

6.3.2 Extra traffic is removed on SD on protection

Both in the G.783 standard and in the ETSI standard, the operation concerning extra traffic is
not specified completely. It is clear that extra traffic must be removed, if any request occurs
that needs the protection link. It is also clear that extra traffic has not much use when the
protection has a SF condition. But there is nothing specified for a SD on protection.

If the highest request is SD on protection, extra traffic can still be transported over the
degraded links.

The behaviour is shown in Figure 6-17 for N=2, so the extra traffic signal has number 3.

Figure 6-17 Extra traffic is removed on SD on protection

6.3.3 Alternative structure to distinct normal and SF/0 case better

As mentioned in paragraph 4.4, the behaviour of the APS protocol can be described
independently for the normal case and for the case there is a SF/0 condition. This separation is
not made in the ETSI specifications.

Several suggestions can be made:
− for each process separate code can be written that addresses SF/0 behaviour,
− new internal states can provide a distinction within the current structure,
− perhaps some choices with respect to the SF/0 behaviour can be made that makes it more

simple.

A method to determine that a newly written structure for the specifications has identical
behaviour to the original specification is the conformance test. This is a verification in which all
possible stimuli are supplied and the output behaviour is checked for identity between the two
specifications.

6.3.4 Handling of an all-ones APS message

When a link has a fail condition in a SDH network, the bits in the frames are filled with ones.
This also affects the APS fields in the APS channel. Such a all-ones APS messages could be
received before the protection process notices the failing condition of the link and a not
intended APS message could be received. What such a message exactly is and what behaviour
the protection process consequently has is for further investigation.

1: # 1:N, bidir, revertive, APS=1, EXTRAtraffic=0
2: # |----|----|----------|----------|----|----|
3: # |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|
4: # |----|----|----------|----------|----|----|
5: # | 0 | 0 | NR ,3,0 > | 0 | 0 |
6: # | 0 | 0 | < NR ,3,3 | 0 | 3 |
7: # | 3 | 3 | NR ,3,3 > | 0 | 3 |
8: # | 3 | 3 | < NR ,3,3 | 3 | 3 |
9: ##|----|----|----[initialized]----|----|----|
10: ### Node 1, command SD for signal 0
11: # | 0 | 3 | SDL ,0,3 > | 3 | 3 |
12: # | 0 | 3 | < RR ,0,0 | 0 | 0 |
13: # | 0 | 0 | SDL ,0,0 > | 0 | 0 |
14: # | 0 | 0 | < RR ,0,0 | 0 | 0 |

63

7 Graphical Simulations

While performing simulations using SPIN, some shortcomings and desires have arisen. One of
them is the fact that all simulations were textual. In this chapter these observations are
discussed (7.1) and a tool that improves some simulation aspects is presented in 7.2. In 7.3 the
interface, commands and options of an actual implementation of this tool is presented. Finally a
structure description is discussed in 7.4

7.1 Simulation Data Presentation

It is important how simulation data is presented to the designer. If simulation data is hard to
interpret, then the behaviour of the system could be unclear or the overview could be lost when
looking at details.
The designer uses the simulation information to get an overview of the system behaviour, to
get insight in behaviour of a specific part of the system or to get details of the behaviour.

Another important aspect of graphical simulations is that the behaviour of a system can easily
be shown the another technical expert or to a generalist, who wants an overview and is
interested in details.

The output of simulations with the model checker SPIN is textual. This textual output restricts
the simulation data to words, values and a limited form of sketching out behaviour, e.g. the
direction messages are flowing (see Figure 6-1). This was adequate for simulations of the APS
protocol, but could be inadequate for network simulations with for example ten nodes.

With only the possibility to produce textual output, there must be thought of ways to cope
with the data abundance. Here are some ways:
− the information can be made more compact by writing short cryptic codes,
− the information can be made more orderly by means of structuring,
− only the information of a specific aspect of the system can be output,
− from the information, a specific aspect can be picked out by means of data post-processing.

But as simulations is concerned, a observation can be made. The designer always has a certain
image of the system he is designing. If the designer is simulating a network protocol, this
image could be a graph of nodes and links with certain notations of messages that flow across
the network. This image is not necessarily the same as the form of elements in the simulation
model.
When interpreting simulation data, the designer translates this data into his image of the
system. The translating could (partially) also be done by the computer.

In order to make the computer able to make this translation, the designer must tell it how his
image of the system looks. In other words, the designer makes a decision how he wants to
visualize the system. When this visual model is finished, the designer tells the computer how
the simulation data is presented in this visualization.

Chapter 7 Graphical Simulations

64

Fundamental is the uncoupling of the structure of the system model from the structure of the
simulation model. Although the structure of the system model can be complex, the structure of
the simulation can be tailor-made to the desired detail level.

An example of a situation where graphical simulation is desirable is shown in Figure 7-1.

In this example the behaviour of linear protection switching in a group of three
SNC protection rings is tested. A SNC protection ring is a linear protection
topology on top of a ring network. In this case, dual node interconnection is used.
This means that the rings are connected with two links. This is a method to
increase the availability of the interconnection of rings.

Note that SNC ring protection is 1+1 unidirectional. The selecting node (marked
with a ‘X’ in the figure) chooses the signal from either the east or west side. The
assignment the predicate working and protection is not very useful here, except to
assign a default selection. Both nodes in the origin of the dual node interconnection
are supplied with the east and west signal.

In this configuration the hold-off problems, discussed in paragraph 4.3, have a
clear application (partitioned protection) and can be the very subject of the
simulation.
The model of this system in PROMELA can contain multiple processes and
channels per node and can have complex behaviour considering the node internal.
This is hidden in the graphical simulation.
Textual output of SPIN simulation output could be very disorderly. Every relevant
state of the nodes and links would be denoted with a node/link identity number and
data considering its state. A graphical presentation is clearly a great improvement
of insight in behaviour.

xx

xx

x

left
input

right
input

copy of signal

selection
Example of
switch states
and resulting

signal path

Figure 7-1 Three SNC protection rings with dual node interconnection

Paragraph 7.2 A Graphical Simulator: InSPIN

65

7.2 A Graphical Simulator: InSPIN

From the mentioned needs, a graphical simulation environment is developed. The objective is a
make simulations graphical, not to reinvent the wheel. The tool SPIN is excellent for model
simulations and the idea of the intended environment is to develop a graphical shell that uses
SPIN for the simulation and modelling and adds extra features to meet the developers needs.
This shell is called InSPIN 1. The essence of this approach is that the same PROMELA model
can be used for simulations and validation with SPIN as for graphical simulations and
presentations with InSPIN.

As mentioned in paragraphs 5.4 and 6.1, SPIN uses a text file with the PROMELA model as
input and produces lines of text as output. To interface with SPIN, InSPIN must provide input
and read the output of SPIN. SPIN is a console program that accepts several parameters at the
command prompt. One parameter specifies the file, which is the PROMELA model. The
output is delivered on the console. This output van also be redirected the file. InSPIN uses this
mechanism to communicate with SPIN. See Figure 7-3.

SPIN

file screen

Figure 7-2 SPIN in- and output

SPIN

InSPIN

file file

Figure 7-3 Communication with SPIN

In the PROMELA model, certain expressions could be printed to describe the state of an
object. InSPIN interprets all SPIN output and reacts in a predefined manner to these
expressions.

Before designing InSPIN, several design objectives were formulated that are useful for the
designer. They are presented here as the InSPIN feature groups.

1 Interface for SPIN

Chapter 7 Graphical Simulations

66

Project features
• Grouping of all information in a project.
• A project consists of the PROMELA model, the graphical layout, the simulation results

and possible comments.
• It is possible present simulation results at a later time, enabling the designer to demonstrate

his model.

Simulation presentation features
• Possibility to present any value in model in a graphical or textual manner.
• Graphical presentation consist of blocks and arrows. The properties of these graphical

objects change their appearance and are affected by the simulation.
• Textual presentation consists of infoboxes, placeable anywhere on the screen. They display

text that can be dictated by the simulation.
• Stepping through simulation results.
• This stepping can be related to time (if modeled) or to stimulus events.

Simulation design features
• Possibility to assign variables in the SPIN model from the InSPIN environment.
• Specifying PROMELA statements as simulation stimuli in the simulation environment.
• The generation of PROMELA statements as stimuli from user indicated graphical events

(e.g. the designer clicks on an arrow to indicate the failure of a link).

Layout design features
• Possibility to design a layout with elements specified in the PROMELA model and to

convert the layout into the correct PROMELA code. This covers the instantiation of
processes and declaration of channels.

The project feature group is easily implemented and of high practical use. The simulation
presentation feature group is the essence of this chapter and is an absolute goal. The simulation
and layout design features groups have the objective to take more routine work out of the
designers hands.
The last two feature groups are harder to implement and do not have such a direct practical
use as the first two, because they rely on the PROMELA language and on the modelling style.
The InSPIN version that is realized in this graduation project, only attempts to satisfy the
project and simulation presentation feature groups.

7.3 InSPIN interface and commands

InSPIN features four graphical elements that form a minimal set to enable network simulations.
They are presented in Figure 7-4 and listed with their properties in Table 7-1. Properties of
elements determine its appearance. Properties that can only be appointed at the design of the
layout are called static. Dynamic properties can be altered with commands.

Paragraph 7.3 InSPIN interface and commands

67

Variable=Value

Block Infobox TextArrow

ABC

Figure 7-4 The InSPIN graphical elements

Table 7-1 The InSPIN graphical elements

Element Static properties Dynamic properties
Block Name (string)

Shape (rectangle, round
rectangle, ellipse)

View (string, indicating an
image)

Arrow Name (string) Drawstyle (thin, thick, dashed)
Direction (none, up, down, both)

Infobox Name (string)
Variable (string)

Value (string)

Text Name (string)
Text (string)

-

The dynamic property view of the block element needs an explanation. During layout design,
images can be supplied and associated with a name, called view. When a view is assigned to
the view property, the corresponding image is drawn inside the block element. This provides a
basic means to visualize an internal structure of a block. In the protection switching
simulations, this is used to visualize the state of the bridge and selector.

The assignment of a view is only possible when the shape property is rectangle. Also the
images must be rectangle.

With use of the printf statement, commands are send from the PROMELA model to the
InSPIN layout. A command is a piece of text that affects a property of a graphical object. It
has the following structure:

#elementname.property=value#

For example, a command like ‘#link0.drawstyle=dotted#’ changes link0 into a dotted
line.

The InSPIN interface is shown in Figure 7-5, with an example of a linear protection switching
model.

Chapter 7 Graphical Simulations

68

Figure 7-5 The InSPIN interface

7.4 The Structure of InSPIN

InSPIN is implemented in Delphi1. The language of Delphi is Object Pascal, a object oriented
extension to PASCAL. It has many similarities with C++. Here an overview is presented of the
general structure.

First some terms of Object Pascal are explained, which are needed in the discussion of the
structure:
Object An object is an instance of a class. It can be created and destroyed

dynamically.
Class A class is a data type. It encapsulates related data and code for operating

on that data, known as methods. The data and methods are collectively
known as class members. Classes can inherit members of other classes.

Inheritance A class that is derived from another class, inherits its class members. It is
said to be a descendant of that class.

Ownership A objects is owner of another object if it has instantiated it. It also has
the responsibility to destroy it.

Reference A reference to an object is the memory address of the instantiation of
that object. It is the only handle that enables access to its members.
Besides the owner, other objects can also store the reference to an
object. A least the owner must store the reference to enable destruction.

Object structure

1 Delphi a Windows development tool from Borland International. Windows is a graphical

operating system from Microsoft Corporation. Both run in a PC environment.

Paragraph 7.4 The Structure of InSPIN

69

In Figure 7-6 the class inheritance structure of InSPIN is shown. The classes printed in bold
are instantiated in the object structure, the normal printed classes are used to specify data and
code that is common to their descendant classes. The class ‘TObject’ is the root class of all
classes in Delphi. It basically provides the means to enable creation and destruction of objects.

TObject

TProject

TLayout

TSimulation

TSimStates

TSystemState

TObjState

TBlockState

TText

TArrowState

TInfoBoxState

TObj

TBlock

TArrow

TTextObj

TInfoBox

TObjList

Figure 7-6 InSPIN class inheritance structure

A short description of the class definition follows:

The classes TBlock, TArrow, TInfoBox and TText implement the graphical elements of
InSPIN. They determine the look of the object in the layout. Their predecessor class TObj
provides data and code to name the individual object and to enable listing them in the
TObjList class.

The descendants of the TObjState class handles the dynamic properties of the graphical
elements. Each instantiation is associated with a TObj instantiation. It represents a state of
an TObj object. The TSystemState class maintains a list of all TObjState states. It represents
the total system state. The TSimStates class maintains a list of TSystemState objects. It
represents all steps in a simulation.

The TSimulation class represents a simulation. It associates a PROMELA source file with a
TSimStates object to represent the states of a simulation.

Chapter 7 Graphical Simulations

70

The TLayout class represents a layout design. It owns four lists of the TObjList class, one
for each graphical element object, and a TSystemState object representing the initial state of
the model.

The TProject class handles the total simulation project. It owns a TLayout object and a list
of TSimulation objects that each represent a performed simulation.

In Figure 7-7 the object structure of InSPIN is shown.

TLayout

TProject

TObjList

TObjList

TObjList

TObjList

DefaultState: TSystemState

TBlock

TArrow

TInfoBox

TText

TSimulation

PROMELA_source: file

TSimStates

(List of)

TSystemState

TSystemState

(List of) TObjState

owning one

owning multiple

Legenda

Figure 7-7 InSPIN object structure

Layout design

Initially the project contains an empty layout and an empty list of simulations. The layout
contains four empty list of graphical element objects. Each graphical element the designer
creates is inserted in the corresponding list in the layout.

The element position and static properties are stored in the element object. The dynamic
properties that are assigned to the element are stored in the elements currentstate object, which
is a corresponding descendant of TObj State. All currentstate objects of the graphical elements
are also stored in a defaultstate object of type TSystemState in the layout.

PROMELA model editing

When the designer enters the source editing mode, a text editor window is shown in which the
designer can edit the PROMELA code. It is saved in a file and this filename is stored in a
simulation object of type TSimulation.

Paragraph 7.4 The Structure of InSPIN

71

SPIN simulation execution

When the designer runs the simulation, InSPIN uses the entered PROMELA file as input for
SPIN. The output that SPIN produces is captured and presented in the results window.
InSPIN also uses this result text to build a simulation state list of type TSimStates. The first
entry in the SimState list is the defaultstate of the layout. Every command that is found in the
output text generates a new systemstate in the list. Although a command only affects one
graphical element, the complete system state is calculated and stored. This makes stepping
back through the simulation more easy.

Simulation stepping

When the simulation is completed, the designer can step through the simulation states. Every
entry that is indicated by the designer, is used to draw up the layout. The system behaviour can
be observed.

73

8 Conclusions

General

System specifications should be written as formal and unambiguous as possible to enable
verification. In order to describe systems, a language is needed and in order to verify a model,
a verification tool is needed. Performing the verification on a computer is absolutely necessary,
because even simple communication systems or protocols can be to large and complicated to
verify manually or mathematically.

Modelling and verification

The specification and verification of systems demand several properties of the specification
language and the verification tool. Several languages and tools are tested for these properties
as described in paragraph 5.1.

From this investigation, one tool and its related language is found to be best suitable for the
verification of the linear protection switching specification. This tool is called SPIN and its
modelling language is called PROMELA. This tool is easy to use and has a large validation
power, which is required for large and complex systems. The language is intuitive, easy to
learn and has enough expression power to model the system specifics related to protection
switching behaviour. Also, SPIN has a wider application area; most systems found in
telecommunication and information technology today are can well be modelled and verified
with SPIN.

Verification results

This tool is used to verify the ETSI linear protection switching specification. Several flaws
were found. They are described in paragraph 6.2. Also proposals are presented that correct
these flaws. In paragraph 6.3, some findings are listed that need future attention. The findings
and an initial solution are described.

Shortcomings of SPIN

While simulating with the SPIN tool, it was noticed that the simulation output is somewhat
limited. SPIN only produces textual output. To enable graphical simulations of systems of any
appearance, a tool called InSPIN is developed. This tool relies on SPIN and its language
PROMELA for the system description and translates the simulation results in a user-defined
graphical manner. This graphical simulator appeared adequate in simulating linear protection
switching operation.

74

Follow up work

The hold-off problems (discussed in paragraph 4.3) needs future attention.

More research is still to be done in the different system aspects and the modelling techniques
they require. Also more verification tools and languages must be investigated to come to a
complementary set of verification techniques.

Further detailed development work of the InSPIN tool is recommended to make the tool
features more accessible to other potential users.

System specification, modelling and verification is an area in which a lot of research and
development of languages and tools is needed. A lot of opportunities remain for graduation
and Ph.D. students for further research and development in this area of system architecture and
requirements.

References

75

References

[Arn94] J.C. Arnbak, Collegedictaat Transmissiesysteemtechniek, Vakgroep
Telecommunicatie- en Verkeersbegeleidingssystemen (TVS), 1994.

[Hol91] C.J. den Hollander, SDH Fundamentals, Trends in Telecommunications,
Volume 7, no.2, 1991.

[Holz91] G.J. Holzmann, Design and Validation of Computer Protocols, Englewood
Cliffs, N.J.: Prentice Hall, ISBN 0-13-539925-4, 1991.

[NW96] M. Nagel and A. Willems, Modelling and Simulation of SDH-Networks
Summary and Proposals, JNL216-R-96005, Lucent Technologies, 1996.

[PV97] P.H.A. van der Putten and J.P.M. Voeten, Specification of Reactive
Hardware/Software Systems, Ph.D. thesis, Technical University Eindhoven,
Eindhoven, The Netherlands, 1997.

[SR91] M. Sexton and A. Reid, Transmission Networking: SONET and the
Synchronous Digital Hierarchy, Norwoord, MA: Artech House, ISBN 0-
89006-551-9, 1992.

[Wal91] J. Walrand, Communication Networks: A First Course, Homewood, IL:
IRWIN, ISBN 0-256-08864-0, 1991.

Annex A: Generic Specification of Linear Protection Switching operation (ETSI)

Annex A

Generic Specification of Linear Protection Switching
operation (ETSI)

Annex A of ‘Linear Protection Switching Requirements Simulation & Verification’

 1

DE-TM-01015-3-1 FINAL DRAFT
 prETS 300 417-3-1

EUROPEAN Version: First Edition

TELECOMMUNICATION for TM approval

STANDARD Date: September 1996

Source: ETSI TC-TM Reference: DE-TM-01015-3-1

ICS: 33.020

Key words: transmission, SDH, interface

Transmission and Multiplexing (TM);

Generic requirements of transport

functionality of equipment;

Part 3-1: STM-N regenerator and multiplex section

layer functions

ETSI

European Telecommunications Standards Institute

ETSI Secretariat

 Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
 Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
 X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1996. All rights reserved.

2

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Final Draft prETS 300 417-3-1: 20 September 1996

 3

Annex A (normative): Generic specification of linear
protection switching operation

NOTE 1: The text in this annex is a reworked copy of Annex A of ITU-T
Recommendation G.783 [5] and presents an attempt to formalise the protection
process specification to remove ambiguities present in ITU-T
Recommendation G.783 [5].

The protection process described in this annex supports linear trail protection (ETS 300 417-1-1 [1],
subclause 9.3.1) as well as linear connection (subnetwork, network) protection (ETS 300 417-1-1 [1],
subclauses 9.4.1 and 9.4.2) in the combinations as listed in table A.1. This protection process controls
the bridge and selector functionality (ETS 300 417-1-1 [1], subclause 9.2, figures 47, 49).

Table A.1: Supported linear protection process combinations

Protection type Architecture type Switching type Operation type APS signal Extra traffic
MS-n trail 1+1 uni-directional non-revertive no (note) no
MS-n trail 1+1 uni-directional revertive no (note) no
MS-n trail 1+1 bi-directional non-revertive yes no
MS-n trail 1+1 bi-directional revertive yes no
MS-n trail 1:n (n ≤ 14) uni-directional revertive yes no
MS-n trail 1:n (n ≤ 14) bi-directional revertive yes no
MS-n trail 1:n (n ≤ 14) bi-directional revertive yes yes

VC-m SNC/I 1+1 uni-directional non-revertive no no
VC-m SNC/I 1+1 uni-directional revertive no no
VC-m SNC/N 1+1 uni-directional non-revertive no no
VC-m SNC/N 1+1 uni-directional revertive no no
VC-m SNC/S 1+1 uni-directional non-revertive no no
VC-m SNC/S 1+1 uni-directional revertive no no

VC-m trail 1+1 uni-directional non-revertive no no
VC-m trail 1+1 uni-directional revertive no no
VC-m trail 1+1 bi-directional non-revertive yes no
VC-m trail 1+1 bi-directional revertive yes no

note: G.783 specifies the use of the APS in these cases, without taking any action on the information.

NOTE 2: Bi-directional switched 1+1 VC-m trail protection requires the definition and bit
allocation of the VC-APS signal.

The remainder of this annex is organised as follows:
- protection process overview;
- external commands definition;
- conditions of protected trail/connection signals;
- states within protection process;
- numbering of working, protection, normal, extra traffic and null signals;
- numbering and priority of external commands, trail/connection signal conditions, and states;
- automatic protection switch (APS) signal definition;
- specification of subprocesses within protection process.

Final Draft prETS 300 417-3-1: 20 September 1996

4

A.1 Protection process overview

APS

Interpreter

process

APS

generator

process

local request

priority

process

RRSN

RRT

P: APS
RBSN

LRT:

LRSN:

LBSN:

LSSN:

RRT:

RRSN:

RBSN:

RARCH:

External Request Type

External Request Signal Number

Global Request Type

Global Request Signal Number

Signal Request Type

Signal Request Signal Number

RARCH

LBSN

SRT/0

OPERtype

GRT

GRSN

ARCHtype

LBSN

ARCHtype

LRSN

LRT

P:APS

global request

priority

process

ERT ERSN

SWtype

Signal Request

Process

Signal Request

Process

Signal Request

Process

SRT/0

SRT/1

SRT/n

Local

Bridge

Control

RRCN

GRT

OPERtype

LSSNLocal

Selector

Control
RBSN

GRSN

SRT/0

ARCHtype

SWtype

RRSN

EXTRAtraffic

dPAM
dSCM dINV

dTMOUT

dTMOUT

dINV
dPAM

ERT:

ERSN:

GRT:

GRSN:

SRT:

SRSN:

Local Request Type

Local Request Signal Number

Local Bridge Signal Number

Local Selector Signal Number

Remote Request Type

Remote Request Signal Number

Remote Bridge Signal Number

Remote Architecture Type

ARCHtype

HOtime

WTRtime

W1: SF,SD

Wn: SF,SD

P: SF,SD

SFpriority

SDpriority

SFpriority

SDpriority

SFpriority

SDpriority

External

Request

Process

EXTCMD

GRT/GRSN
Reporting

APSmode

PROTtype

Figure A.1: Subprocesses within generic linear trail/connection protection processes

Final Draft prETS 300 417-3-1: 20 September 1996

 5

Linear protection processes can be characterised by the following (super)set of subprocesses
(figure A.1):

Signal Request converts SF and SD signals of a working/protection trail/connection signal
into a (signal) request type and trail/connection number

External Request converts the external commands into an (external) request type and
signal number

Local Request Priority determines the highest priority local request

APS Interpretation converts the APS signal into a (remote) request type, request signal
number, bridged signal number, and architecture type (if applicable)

Global Request Priority determines the highest global request type comparing local and remote (if
applicable) requests

Local Bridge Control determines which of the normal/extra traffic signals is bridged to the
protection trail/connection

Local Selector Control determines which of the normal/extra traffic signals is connected
to/extracted from the protection trail/connection

APS Generation converts the global request type, global request signal number, local
bridged signal number, and local architecture into the APS signal

Reporting reports the status (local, remote) of the protection process; remote status
if APS signal is supported

A specific protection application is characterised by the following parameter set:

Table A.2

Parameter Value options
Architecture type (ARCHtype) 1 + 1, 1:n
Switching type (SWtype) uni-directional, bi-directional
Operation type (OPERtype) revertive, non-revertive
APS signal (APSmode) true, false
Wait-To-Restore time (WTRtime) in the order of 0-12 minutes
Switching time ≤50 ms
Hold-off time (HOtime) 0 to 10 seconds in steps of the order of 100 ms
Protection type (PROTtype) SNC/I, SNC/N, SNC/S, trail
Signal switch conditions: SF = SSF (SNC/I)

SF = TSF (SNC/N, SNC/S, trail), SD = TSD (SNC/N,
SNC/S, trail)

External commands (EXTCMD) LO-#0, FSw-#i, MSw-#i, EXER-#i, CLR
Extra traffic (EXTRAtraffic) true, false

Final Draft prETS 300 417-3-1: 20 September 1996

6

A.2 External switch commands definition

A switch command issues an appropriate external request. Only one switch request can be issued
per protection group. Switch commands are listed below in the descending order of priority and the
functionality of each is described.

NOTE 1: The addition of the Lockout for Working #i command is for further study.

The function shall generate an automatic response confirming that the request was executed, or
stating that the request was denied for a particular reason.

1) Clear (CLR): Clears all switch commands listed below.

2) Lockout of protection (LO): Request to deny all normal signals (and the extra traffic signal, if
applicable) access to the protection trail/connection.

NOTE 2: Request is honoured unless an equal priority switch command is in effect. If the
request is denied, it is released and forgotten.

3) Forced switch #i (FSw-#i): Request to switch normal signal #i (1 ≤ i ≤ n, n ≤ nmax) to the
protection trail/connection, or request to switch extra traffic signal #nmax+1 to the protection
trail/connection, or (for the case of 1+1 non-revertive systems) request (FSw-#0) to switch
normal signal to working trail/connection.

NOTE 3: Request is honoured unless an equal or higher priority switch command is in effect or
(for the case an APS signal is in use) SF condition exists on the protection
trail/connection. If the request is denied, it is released and forgotten.

NOTE 4: For 1 + 1 non-revertive systems, "forced switch no normal signal (FSw-#0)" transfers
the normal signal from protection to the working trail/connection, unless an equal or
higher priority request is in effect. Since forced switch has higher priority than SF or
SD on the working trail/connection, this command will be carried out regardless of the
condition of the working trail/connection.

NOTE 5: For 1: n architectures, “forced switch to extra traffic (FSw-#nmax+1)” forces the extra
traffic signal to the protection trail/connection and prevents normal signals to be
transported over protection.

4) Manual switch #i (MSw-#i): Request to switch normal signal #i (1 ≤ i ≤ n, n ≤ nmax) to the
protection trail/connection, or (for the case of 1+1 non-revertive systems) request (MSw-#0) to
switch normal signal to working trail/connection.

NOTE 6: Request is honoured unless a defect condition exists on other trail/connections
(including the protection trail/connection) or an equal or higher priority switch
command is in effect. If the request is denied, it is released and forgotten.

NOTE 7: For 1 + 1 non-revertive systems, "manual switch no normal signal (MSw-#0)"
transfers the normal signal back from protection to the working trail/connection,
unless an equal or higher priority request is in effect. Since manual switch has lower
priority than SF or SD on a working trail/connection, this command will be carried out
only if the working trail/connection is not in SF or SD condition.

5) Exercise #i (EXER-#i): Request for an exercise to check responses on APS bytes for normal
signal #i (1 ≤ i ≤ n, n ≤ nmax). The switch is not actually completed, i.e. the selector is released
by an exercise request on either the sent or the received and acknowledged K1 byte.

NOTE 8: Request is honoured unless the protection signal is in use.

Final Draft prETS 300 417-3-1: 20 September 1996

 7

The following table presents alternative user interface external command strings for the case of 1+1
protection architectures. Note that the generic names will be used in this ETS.

Table A.3

generic alternative for
1+1 revertive

alternative for 1+1
non-revertive

result

LO (#0) LO - normal signal connected to
working trail/connection

FSw-#0 - FSw-(to)-W normal signal connected to
working trail/connection

FSw-#1 FSw-(to)-P FSw-(to)-P normal signal connected to
protection trail/connection

MSw-#0 - MSw-(to)-W normal signal connected to
working trail/connection

MSw-#1 MSw-(to)-P MSw-(to)-P normal signal connected to
protection trail/connection

A.3 Conditions of working and protection trail/connections

Working and protection trail/connection (signals) have a condition associated with them: fault free, signal
fail, signal degrade. The condition is communicated with the protection process by means of the SF and
SD signals within the characteristic or adapted information of the working/protection trail/connection
signal.

A.4 States within protection process

The protection process has a number of so called states associated with it: no request, do not revert,
reverse request, and wait to restore. A description of the effect of the states is presented below:

Wait to restore (WTR): In the revertive mode of operation, the normal signal will be restored (i.e. the
signal on the protection trail/connection will be switched back to the working trail/connection) when the
working trail/connection has recovered from the fault.

To prevent frequent operation of the selector due to an intermittent fault, a failed working trail/connection
must become fault-free. After the failed trail/connection meets this criterion, (and no other externally
initiated commands are present) a fixed period of time will elapse before it is used again by the normal
signal. During this WTR state, switching will not occur.

An SF or SD condition will override the WTR. After the WTR period is completed, a No Request state
will be entered. Switching will then occur from the protection trail/connection to the working
trail/connection.

Reverse request: For the case of bi-directional switching, a reverse request is returned for exerciser and
all other requests of higher priority. This clearly identifies which end originated the switch request.

If the head end had also originated an identical request (not yet confirmed by a reverse request) for the
same signal, then both ends would continue transmitting (in the APS signals) the identical request type
(RT) and signal number (RSN) and perform the requested switch action.

In uni-directional switching, reverse request is never indicated.

Final Draft prETS 300 417-3-1: 20 September 1996

8

Both wait-to-restore and do not revert requests in the RT fields of the transmitted APS signal are
normally acknowledged by a reverse request in the RT field of the received APS signal. However, no
request is acknowledged by another no request received.

Do not revert: In the non-revertive mode of operation, assuming the normal signal is on protection when
the working trail/connection is repaired or a switch command is released, the tail end maintains the
selection and issues LRT/LRSN = DNR/1 (do not revert for normal signal 1).

For the case of bi-directional switching, the head end also maintains the selection and continues
indicating reverse request. The do not revert is removed when pre-empted by a defect condition or an
external request.

No request: This state represents the inactive state of the request processes (signal, external, local,
remote, and global request processes). None of the trail/connection signal conditions is active, none of
the external commands is active, and none of the states described above is active.

A.5 Numbering of working, protection, normal, extra traffic, null signals

The protection trail/connection shall be referred to as number “0”. The working trails/connections are
numbered “1”, “2”, etc. The assignment of these numbers to physical entities in a network element is
equipment specific and not within the scope of this ETS.

W1 W2 Wn P

N1 N2 Nn E

W1 W2 Wn P0

N1 N2 Nn E

working trails, or
working connections

protection trail, or

protection connection

normal signals extra traffic signal

01 2 n

nmax+1

Figure A.2: Definitions of working trail/connection, protection trail connection, normal and extra
traffic signal

The normal signals shall be numbered (equivalent to the working trails/connections) “1”, “2”, etc. In 1:n
(n = 1,2,3,..,nmax) protection architectures normal signal #i shall be transported over working
trail/connection #i or over the protection trail/connection. For the case of section layer protection, the
assignment of these numbers to physical entities in a network element is equipment specific and not
within the scope of this ETS. For the case of path layer protection, the assignment of these numbers to
physical entities in a network element shall be provisionable via configuration management.

NOTE: The value of nmax is protection application dependent.

The extra traffic signal (supported in 1:n architectures only) shall be referred to as number nmax+1. The
extra traffic signal shall be transported over the protection trail/connection when this one is not
transporting a normal signal and the protection trail/connection is not “locked out”.

The null signal, present in 1:n architectures only, shall be referred to as number “0”. When none of the
normal signals nor an extra traffic signal is transported over the protection trail/connection, the null signal
shall be transported. This can be any signal (e.g. one of the normal signals, a test signal, an all-ONEs
signal).

Final Draft prETS 300 417-3-1: 20 September 1996

 9

A.6 Priority of request types (conditions, external commands, states)

A request can be a local or remote:

1) condition (SF and SD) associated with a working or protection trail/connection. A condition
has high or low priority.

2) state (wait-to-restore, do not revert, no request, reverse request) of the protection process.
3) external request (lockout of protection trail/connection, forced or manual switch of

normal/extra traffic signal, exercise).

The basic priorities of the requests shall be as specified by table A.4. In addition, a SF-H or SF-L
condition of the protection trail/connection has priority over FSw when an APS signal is supported.

NOTE: Requests are selected from the table, depending on the protection switching
arrangements; i.e. in any particular case, only a subset of the requests may be
required.

Table A.4: Request Type (RT) priority

Request Type with
APS

Request Type
without APS

Priority

LO LO highest
SF-H, SF-L on
protection
trail/connection

- |

FSw FSw |
SF-H SF-H |
SF-L SF-L |
SD-H SD-H |
SD-L SD-L |
MSw MSw |
WTR WTR |
EXER EXER |
RR RR |
DNR DNR |
NR NR |
INV - lowest

A.7 APS signal definition

A.7.1 APS signal fields

An automatic protection switch (APS) signal performs the communication function between the
protection processes at the two ends of the protection span. For a linear protection application the
following information will be passed:

- request type (RT);
- request signal number (RSN);
- local bridged signal number (LBSN);
- local architecture type (ARCH) (application dependent).

RT: 4 bits indicate the type of request, as listed in table A.5.

Final Draft prETS 300 417-3-1: 20 September 1996

10

Table A.5: Request Type mapping into APS signal

RT code in RT field
[MSB-LSB]

NR 0000
DNR 0001
RR 0010

EXER 0100
WTR 0110
MSw 1000
SD-L 1010
SD-H 1011
SF-L 1100
SF-H 1101
FSw 1110
LO 1111

RSN: M bits1 indicate the number of the signal (normal, extra, trail, connection) for which the request
is issued, as shown in table A.6. The coding in the RSN field of the APS signal is binary.

Table A.6: Request signal number

Signal number Refers to requesting switch action for
0 Null signal or protection trail/connection signal depending on associated

Request Type (RT):
- Conditions (SF, SD) and associated priority apply to the protection
trail/connection signal.
- External commands (LO-#0, FSw-#0, MSw-#0) apply to the protection
trail/connection.
- States (NR-#0, RR-#0, WTR-#0, DNR-#0) for further study.

1 to nmax Normal signal or working trail/connection signal depending on
associated Request Type (RT):
- Conditions (SF, SD) and associated priority apply to the corresponding
working trail signals.
- External commands (FSw-#i, MSw-#i, EXER-#i) apply to the
corresponding normal signals.
- States (NR-#i, RR-#i, WTR-#i, DNR-#i) for further study.

For 1 + 1, only normal signal/working trail/connection signal 1 is
applicable with fixed high priority

nmax+1 Extra traffic signal:
- Conditions (SF, SD) are not applicable.
- External commands (FSw-#M, MSw-#M, EXER-#M) apply to the extra
traffic signal.
- States (NR-#M) for further study.

Exists only when provisioned in a 1 : n architecture.

1 M is application dependent.

Final Draft prETS 300 417-3-1: 20 September 1996

 11

LBSN: M bits (M is application dependent) indicate the number of the signal (null, normal, or extra)
that is bridged to the protection trail, as shown in table A.7. The coding in the LBSN field of the APS
signal is binary.

Table A.7: Local bridged signal number

Signal number Indication of
0 Null signal.

1 to nmax Normal signal.

NOTE - For 1 + 1, only normal signal 1 is applicable.

nmax+1 Extra traffic signal.

NOTE - Exists only in a 1 : n architecture.

ARCH: 1 bit indicates the type of the architecture as shown in table A.8:

Table A.8: architecture type

ARCH Architecture type
0 1 + 1
1 1 : n

A.7.2 STM-N MS-APS

The APS signal for 1+1 and 1:n linear STM-N MS protection consists of 13 bits organised in 4 groups
as depicted in figure A.3. Refer to prETS 300 746 [6].

K1 K2
1 2 3 4 5 6 7 8 1 2 3 4 5

request type request signal number local bridged signal number arch

Figure A.3: STM-N MS-APS definition

A.7.3 STM-N VC-APS

VC APS definition and bit allocation is for further study.

Figure A.4: VC APS definition (to be defined)

A.8 Switch performance: switching and holdoff times

For automatically initiated conditions (i.e. SF and SD), the protection switch completion time shall be less
than 50 ms. Protection switch completion time excludes the detection time necessary to initiate the
protection switch, and hold-off time. It includes the transmission transfer delay time when bi-directional
and 1:n uni-directional switching is selected.

NOTE 1: The allocation of the maximum protection switching completion time is currently
under study in ITU-T.

NOTE 2: When bi-directional and 1:n uni-directional switching is required, the transfer delay
time may limit the length of the protected trail/connection. This is due to the transfer
delay of protection information that is to be communicated between the two ends via
the APS signals. Alternatively, the protection switch time for such a case could be
defined as a value with 3 components: a fixed (basic) value, the length of the
protection trail/connection, and the number of network elements and their processing
level (e.g. AU only, AU and TU). This is for further study.

Final Draft prETS 300 417-3-1: 20 September 1996

12

Hold-off times are useful to stagger protection switching activation between various transport layers or
within the same transport layer. It shall be possible to provision for each protection group (refer to ETS
300 417-1-1 [1], subclause 9.2.1) whether or not a holdoff timer is enabled. The objective is that the
holdoff time should be selectable per protection group on an individual basis. As a minimum, a single
holdoff time per layer shall be supported, applicable for all protection groups within that layer. The defect
condition should be continuously monitored for the full duration of the hold-off time before switching
occurs. The hold-off time should therefore be provisionable from 0 to 10 seconds in steps of 100 ms.

NOTE 3: The specification of the operation of a holdoff timer within the protection switch
process is for further study.

The service interruption due to the switching on an external command (CLR, LO, FSw, MSw) shall be
limited to the switch-over time.

A.9 Subprocesses

This subclause specifies in a more or less formal manner the operation of the subprocesses within the
protection process.

NOTE 1: SDL specification for the following pseudo code is for further study.

NOTE 2: The addition of a Lockout of Working #i command is for further study.

NOTE 3: The addition of a holdoff timer is for further study.

Signal request (type & signal number) processes

This process shall transfer the input SF and SD signals from a trail/connection (either protection (#0), or
working #1, .. , or working #n) into a Signal Request Type (SRT) and Signal Request Signal Number
(SRSN):

- The SRSN shall be "0" (zero) for the protection trail/connection and "i" (1 ≤ i ≤ n) for working
trail/connection #i.

- The SRT shall be generated based on the inputs SF, SD, SFpriority, SDpriority, as follows:

if (SF==true)
then if (SFpriority==high)
 then SRT= SF-H
 else SRT=SF-L
 fi
else if (SD==true)
 then if (SDpriority==high)
 then SRT=SD-H
 else SRT=SD-L
 fi
 else SRT= NR
 fi
fi

Final Draft prETS 300 417-3-1: 20 September 1996

 13

 External request (type & signal number) process

This process shall transfer the external commands (EXTCMD) into an External Request Type (ERT) and
External Request Signal Number (ERSN):

- The ERSN shall be "0" (zero) if no normal signal is indicated, "i" (1 ≤ i ≤ nmax) for normal
signal #i, and “nmax+1” for the extra traffic signal

- The ERT/ERN shall be generated as follows:

do on external command reception
 start 2.5 s Completion Timer (CTimer)
 if (EXTCMD==clear)
 then ERT=NR
 ERSN=0
 else if (EXTCMD==lockout of protection)
 then ERT=LO
 ERSN=0
 else if (EXTCMD==forced switch-#i)
 then ERT=FSw
 ERSN=#i
 else if (EXTCMD==manual switch-#i)
 then ERT=MSw
 ERSN=#i
 else if (EXTCMD==exercise-#i)
 then ERT=EXER
 ERSN=#i
 fi
 fi
 fi
 fi
 fi
 wait until CTimer is expired
 then {check if FSw request is denied, then release external (FSw) request}
 if (ERT==FSw) and not [((GRT==FSw) or (GRT==RR)) and (GRSN==ERSN)]
 then ERT=NR
 ERSN=0
 fi
 {check if LO request is denied, then release external (LO) request}
 if (ERT==LO) and not [((GRT==LO) or (GRT==RR)) and (GRSN==ERSN)]
 then ERT=NR
 ERSN=0

 {check if MSw request is denied, then release external (MSw) request}
 if (ERT==MSw) and not [((GRT==MSw) or (GRT==RR)) and (GRSN==ERSN)]
 then ERT=NR
 ERSN=0
 fi
 {check if EXEC request is denied, then release external (EXEC) request}
 if (ERT==EXEC) and not [((GRT==EXEC) or (GRT==RR)) and(GRSN==ERSN)]
 then ERT=NR
 ERSN=0
 fi
 tiaw
od

NOTE 4: the above clearing of external requests is continuously active after expiry of 2.5
seconds timer. If the external command was acknowledged initially, but is overruled
later on, the external command is dropped consequently.

Final Draft prETS 300 417-3-1: 20 September 1996

14

Local request (type & signal number) priority process

This process shall determine the highest priority local request. It shall evaluate the status of the
protection and working input signals (SRT/SRSN #0 to SRT/SRSN #n), the external command
(ERT/ERSN), and protection parameters OPERtype and EXTRAtraffic by a three step priority logic:

1) The highest priority local request shall be determined over the set of SRT/0, SRT/1, ..,
SRT/n, ERT inputs based on the descending order of request type priorities in table 0;

2) If there is at least one SRT that is higher than the ERT, and if two or more trails/connections

(working/protection) have the same highest request type (SRT), the trail/connection with the
lowest number shall take priority, unless the priority of the highest SRT is identical to the
current LRT.

NOTE 5: The protection trail/connection has the highest priority due to its number (#0).

NOTE 6: When normal signal number B is already transported via the protection
trail/connection, it will not be replaced by normal signal number A (A < B) if both
working trail/connection A and working trail/connection B have the same defect
condition with the same priority (i.e. SRT/A == SRT/B is e.g. SF-H).

3) If highest priority request (SRT, ERT) detected under 1. and 2. is no-request (NR), the LRT
depends on the history of the protection process, the operation type, and the presence of an
extra traffic signal.

The following pseudo code describes this 3 step process:

if ((LRT==WTR) and (ERT==EXER))
then {exercise command is of lower priority then wait-to-restore state}
 LRTnew=NR
 LRSNnew=0
 LRsource=signal
else
 LRTnew = ERT {initialise process}
 LRSNnew=ERSN
 LRsource=external
fi
for i==0 to n
do {find highest priority local request active}
 if (LRTnew < SRT/i)
 then LRTnew=SRT/i
 LRSNnew=i
 LRsource=signal
 fi
od
if (LRTnew==NR)
then {No-Request case}
 if (OPERtype==non-revertive)
 then {non-revertive case}
 if (LRSN==1) {check if do not revert needs to be generated}
 then LRT= DNR
 else LRT=NR
 fi
 else {revertive case}
 if (((LRT==SF) or (LRT==SD) or (LRT==WTR)) and (WTRtimer > 0))
 then {previous request was a SF or SD, or a WTR running}
 LRT=WTR
 else {previous request was no-request}
 LRT=NR
 if (EXTRAtraffic==true)
 then {extra traffic supported}

Final Draft prETS 300 417-3-1: 20 September 1996

 15

 LRSN=nmax+1
 else {extra traffic not supported}
 LRSN=0
 fi
 fi
 fi
else {Request case}
 if (LRsource==external)
 then {external local request has highest priority}
 LRT=LRTnew
 LRSN=LRSNnew
 else {a signal has highest local request priority}
 if (LRTnew≠LRT)
 then {new request not equal to existing local request}
 LRT=LRTnew
 LRSN=LRSNnew
 else {new request equal to existing local request}
 if (SRT/LRSN≠LRTnew)
 then {existing local request source has changed request}
 LRSN=LRSNnew
 fi
 fi
 fi
fi

In revertive mode of operation a wait-to-restore timer (WTRtimer) shall be supported. The wait-to-restore
period (WTRtime) shall be provisionable in the order of 0 - 12 minutes, in steps of Y seconds. The timer
shall be set to the provisioned value when the SF or SD defect condition is active (LRT=SF or LRT=SD).
The timer shall be started when the last defect condition (SF, SD) clears; i.e. when all SRTs indicate No
Request (NR). The WTR timer shall count down to zero. The WTR timer shall be reset to zero
(deactivates earlier) if the Global Request Type (GRT) no longer indicates wait-to-restore, i.e. when any
request of higher priority pre-empts this state.

The value of Y is for further study.

APS interpretation process

This process shall translate the accepted APS signal into the signals Remote Request Type (RRT),
Remote Request Signal Number (RRSN), Remote Bridged Signal Number (RBSN) and Remote
Architecture type (RARCH), as follows:

- RRT as specified in table A.9.
- RRSN = AcRSN
- RBSN = AcLBSN
- RARCH = AcARCH.

NOTE 6: AcRSN and AcLBSN can be out of range due to a fault or bit errors. For such case an

invalid defect will be detected. See below.

Final Draft prETS 300 417-3-1: 20 September 1996

16

Table A.9: Remote Request Type (RRT) interpretation from APS signal

AcRT RRT
0000 NR
0001 DNR
0010 RR
0011 invalid
0100 EXER
0101 invalid
0110 WTR
0111 invalid
1000 MSw
1001 invalid
1010 SD-L
1011 SD-H
1100 SF-L
1101 SF-H
1110 FSw
1111 LO

Defects:

If the received APS Architecture (RARCH) value differs from the local architecture type (ARCHtype) for
a period of 50 ms, a Protection Architecture Mismatch defect (dPAM) shall be detected. The defect shall
be cleared when the there is a match again.

If the request type bits (RT) in the APS signal indicate an invalid request code, or the RSN or LBSN
indicate a non-existing trail/connection/normal signal number, an invalid command defect (dINV) shall be
detected when the condition exist for 50 ms. The defect shall be cleared when the RT indicate a valid
code and the RSN or LBSN indicate an existing signal number. Neither shall be considered remote
requests for a locally locked out normal signal.

Global request priority process

The local request (LRT,LRSN) and the remote request (RRT,RRSN) shall be compared to decide
which has priority. The priority shall be determined according to the descending order of priorities in
table A.4. Note that a received reverse request shall not be considered in the comparison.

The result, Global Request Type (GRT) and Global Request Signal Number (GRSN) shall be
determined as follows:

if ((SWtype==bi-directional) and (SRT/0≠SF) and (RRT≠RR) and
 [(RRT>LRT) or
 ((RRT==LRT) and (GRT==RR)) or
 ((RRT==LRT) and (GRT≠RR) and (RRSN<LRSN))])
then {bi-directional switching, no SF on protection trail/connection, no reverse
 request, and either “remote request overrules local request” or “remote
 request equals local request and was already accepted” or “remote
 request equals local request and remote signal number is lower than
 local signal number”}
 GRT=RR
 GRSN=RRSN
else {uni-directional switching or SF on protection trail/connection or reverse
 request received or local request overrules remote request or local and
 remote requests are equal and local signal number is less or equal
 remote signal number}
 GRT=LRT
 GRSN=LRSN
fi

Final Draft prETS 300 417-3-1: 20 September 1996

 17

NOTE 7: Refer to subclause A.4.

Defects:

If a head end response on a tail end request does not comply to the protocol (i.e. “not ((RRT==RR and
RRSN==GRSN) or RRT≥LRT)”) within a period of 50 ms, an acknowledge timeout defect (dTMOUT)
shall be detected. The defect shall be cleared when the head-end response complies again or if the
protection trail/connection is in SF condition.

Bridge control process

This process controls which of the normal/extra traffic signals is bridged to the protection trail/connection.
Its operation shall be as follows:

if (ARCHtype==1+1)
then {1+1 architecture}
 LBSN=1 {normal #1 signal permanent bridged}
else {1:n architecture}
 if [(SRT/0≠SF) and (not (dPAM or dSCM or dTMOUT or dINV))]
 then {no SF on protection and no failure of protocol}
 LBSN=RRSN
 else {SF on protection or failure of protocol}
 if (SWtype==bi-directional)
 then LBSN=0
 fi
 fi
fi

NOTE 8: When the protection trail/connection is not in use, null signal is indicated on both RSN
and LBSN fields in the APS signal. Any normal signal may be bridged to the
protection trail/connection at the head end. The tail end must not assume or require
any specific signal.

Selector control process

This process controls which of the normal/extra traffic signals is connected to/extracted from the
protection trail/connection. Its operation shall be as follows:

if ((ARCHtype==1+1) and (SWtype==uni-directional))
then
 if [(SRT/0≠SF) or (APSmode==false)]
 then LSSN=LRSN
 else LSSN=0 {release the selector due to SF on protection when an APS
 channel is in use}
 fi
else {1+1 bidirectional switching or 1:n uni- & bi-directional switching}
 if [(GRSN==RBSN) and (SRT/0≠SF) and (not (dPAM or dSCM or dINV or dTMOUT))]
 then LSSN=GRSN
 else LSSN=0 {release the selector due to protection SF or failure of protocol}
 fi
fi

NOTE 9: In 1 + 1 architecture in uni-directional switching, each end operates independently of
the other end, and APS signal is not needed to co-ordinate switch action. However,
for the case an APS is supported it is still used to inform the other end of the local
action.

NOTE 10: Note that selectors can be temporarily released when normal signal #i gets replaced
by normal signal #j, due to temporary signal number mismatch on GRSN (RSN in
transmitted APS signal) and RBSN (LBSN in received APS signal).

Final Draft prETS 300 417-3-1: 20 September 1996

18

NOTE 11: The operation of 1 + 1 bi-directional switching is optimized for a network in which 1 : n
protection switching is widely used and which is therefore based on compatibility with
a 1 : n arrangement. Since the bridge is permanent, i.e. normal signal number 1 is
always bridged, normal signal 1 is indicated on the LBSN field in the transmitted APS
signal, unless the RSN field in the received APS signal indicates null signal (0).
Switching is completed when both ends select the signal, and may take less time
because LBSN indication does not depend on a bridging action.

NOTE 12: When the switch is no longer required, e.g. the failed working trail/connection has
recovered from the fault and Wait-to-restore has expired, the tail end indicates No
Request for Null Channel on the APS fields RT and RSN. This releases the selector
due to signal number mismatch. The head end then releases the bridge and replies
with the same indication on its RT and RSN fields and Null signal indication on LBSN.
The selector at the head end is also released due to mismatch. Receiving Null signal
on RSN causes the tail end to release the bridge. Since the LBSN fields now indicate
Null Channel which matches the Null Channel on the RSN bytes, the selectors remain
released without any mismatch indicated, and restoration is completed.

Defects:

If a mismatch between RBSN and GRSN persists for 50 ms, a Selector Control Mismatch defect
(dSCM) shall be detected. The dSCM shall be cleared when RBSN is identical to GRSN or if the
protection trail/connection is in SF condition.

Consequent Actions:

The selector shall be released if one or more of the four defects dPAM, dSCM, dTMOUT, dINV is active.

APS generation process

This process shall translate the signals Global Request Type (GRT), Global Request Signal Number
(GRSN), Local Bridged Signal Number (LBSN) and local Architecture type (ARCHtype) into a
transmitted APS signal, as follows:

- TxRT as specified in table A.10
- TxRSN = GRSN
- if ((RRSN==0)
 then TxLBSN = 0
 else TxLBSN = LBSN
 fi
- if (ARCHtype==1+1)
 then TxARCH = 0
 else TxARCH = 1
 fi

Final Draft prETS 300 417-3-1: 20 September 1996

 19

Table A.10: Global Request Type (GRT) mapping into APS signal

GRT TxRT
NR 0000
DNR 0001
RR 0010
EXER 0100
WTR 0110
MSw 1000
SD-L 1010
SD-H 1011
SF-L 1100
SF-H 1101
FSw 1110
LO 1111

Reporting

The issue of reporting is for further study. However, initial thoughts on this topic are given below:

The function reports the active external request, active local request, active remote request (if APS
supported), reason of denial of an external command, and the condition (SF,SD) of the working and
protection trails/connections.

The condition of the working and protection trails/connections is reported to present a complete set of
information to allow unambiguous interpretation of the status of the protection entity and reaction on
external commands.

MI_SignalStatus/i ← SRT/i

Defect Correlations:

cFOP ← (dSCM or dPAM or dTMOUT or dINV) and (not CI_SSF)

Performance Monitoring:

Every second the number of Protection Switch actions within that second shall be reported as pPSC
(Protection Switch Count).

For the case of revertive operation, every second that the normal signal #i is not selected from the
working trail/connection #i shall be reported as a pPSD/i, i ≥ 1, (Protection Switch Duration for working
trail/connection #i). Every second that a normal signal is selected from the protection trail/connection
shall be reported as a pPSD/0.

Annex B: The PROMELA Model of the ETSI Protection Switching Process 1

Annex B

The PROMELA Model of the ETSI Protection Switching Process

Annex B: The PROMELA Model of the ETSI Protection Switching Process 3

/***

 This model implements Protection Switching specifications from:
 Final Draft ETSI ETS 300 417-3-1 annex A

 ***/

/**/
/* time constants, commands and variables */

/* Global variables: */
byte time=0 ;
byte nmbActiveTimers=0 ;

/* Constants: */
#define INACTIVE 255
#define MAXTIME (INACTIVE-1)

/* Timer Macros: */
#define SETTIMER(X,Y) { if :: (X==INACTIVE) -> nmbActiveTimers++ \
 :: else -> skip fi ; X=time+(Y) }
#define CLEARTIMER(X) { if :: (X!=INACTIVE) -> nmbActiveTimers-- \
 :: else -> skip fi ; X=INACTIVE }
#define TIMEREXPIRY(X) (time==X)
#define TIMERACTIVE(X) (X!=INACTIVE)

#if 0
/* Time Macros: */
#define WAITFORTIME(X) {nmbActiveTimers++;(time==(X));nmbActiveTimers--}
 /* DONOT use as a guard!! x++ is always executable.. */

active proctype GlobalTime()
{ do
 :: timeout ->
 if
 :: (nmbActiveTimers > 0) && (time < MAXTIME) ->
 atomic
 { time++ ;
 printf("# time=%d\n", time)
 }
 :: (time==MAXTIME) ->
 printf("# maxtime (%d) reached -> stop\n", MAXTIME) ;
 break
 :: else ->
 printf("# done.\n");
 time=MAXTIME ; /* allow other to see time is over */
 break
 fi
 od
}
#endif
/**/

/* 0=disable, 1=include statements for printing */
#define PRINTAPS 1
#define PRINTIS 0

/* The missing logical operator (X->Y) */
#define imply(X,Y) ((!(X)) || (Y))

/* define soft_assert: (0) PROMELA assert or (1) only print 'ugh!' */
#if 0
#define soft_assert(X) {if :: !(X) -> printf("# -ugh!-\n") :: else -> skip fi}
#else
#define soft_assert(X) assert(X)
#endif

/* Globals */
#define true 1
#define false 0
#define NONE 254
#define error assert(0)

/* Parameters */

 byte Nmax ; /* prot=0, work=1,..,Nmax, extra=Nmax+1 */
 byte ARCHtype[2] ;
#define _1_1 0
#define _1_N 1

Annex B: The PROMELA Model of the ETSI Protection Switching Process 4

 byte SWtype[2] ;
#define uni_directional 0
#define bi_directional 1
 byte OPERtype[2] ;
#define revertive 0
#define non_revertive 1
 bool APSmode[2] ;
 int WTRtime ;
 int SwitchingTime ;
 byte PROTtype ;
#define SNC 0
#define TRAIL 1
 bool EXTRAtraffic[2] ;

#define N1 0
#define N2 1

 /* channel priorities (used in external request) */
#define LOW 31
#define HIGH 30

 /* channel status */
#define SF 22 /* link (or upstream link) has signal fail */
#define SD 21 /* link (or upstream link) has signal degrade */

#define CLEAR 14 /* External command */
#define TO 13 /* signal from timer-expiry */

/* Request Types, with priorities */
#define LO 12
 /* both SFL and SFH on Prot is higher than SF on Working and FSw */
#define FSw 11
#define SFH 10
#define SFL 9
#define SDH 8
#define SDL 7
#define MSw 6
#define WTR 5
#define EXER 4
#define RR 3
#define DNR 2
#define NR 1
#define INV 0 /* invalid */

#define SOURCE_SIGNAL 0
#define SOURCE_EXTERNAL 1

mtype = {
 /* protection channel msg-type */
STATUS, /* msg-type is channel status (NR/SF/SD) */
APS /* msg-type is APS */
}

byte etsi_lssn[2];
byte etsi_lbsn[2];
byte etsi_grt[2] ;

byte soon=0 ;

/**/

proctype ETSInode(byte n;
chan extcmd, in1, out1, in2, out2, win1, wout1, win2, wout2,protin, protout;
byte HOtime ;
byte SDpriority0, SDpriority1, SDpriority2,
 SFpriority0, SFpriority1, SFpriority2)

{ byte HOtimer=INACTIVE ;

 byte cmd, extsig ;

 byte lrtnew, lrsnnew ;
 byte i;
 byte lrsource ;

 byte tx_lbsn ;

 byte prev_grt=NR ;

Annex B: The PROMELA Model of the ETSI Protection Switching Process 5

 bool stimul_is_aps ;
 byte msg ;
 byte m1, m2, m3 ;
 byte prev_m1=NR, prev_m2=0, prev_m3=0 ;
 bool newAPS ;
 byte sr ; /* signal request number */

byte lrt=NR ;
byte lrsn=0 ;
byte lbsn=0 ;
byte lssn=0 ;

byte grt=NR ;
byte grsn=0 ;

byte rrt=NR ;
byte rrsn=0 ;
byte rbsn=0 ;

byte ert=NR ;
byte ersn=0 ;

byte WTRtimer=INACTIVE ;

byte srt[3] ;
byte SDpriority[3] ;
byte SFpriority[3] ;

/* defect = (dPAM or dSCM or dINV or dTMOUT) */
bool defect=false ;

INITIALIZE:
atomic { /* --- */
 srt[0]=NR; srt[1]=NR; srt[2]=NR;
 SDpriority[0]=SDpriority0 ; SFpriority[0]=SFpriority0 ;
 SDpriority[1]=SDpriority1 ; SFpriority[1]=SFpriority1 ;
 SDpriority[2]=SDpriority2 ; SFpriority[2]=SFpriority2 ;
 if
 :: ARCHtype[n]==_1_1 ->
 lbsn = 1
 :: else -> skip
 fi;
 etsi_lssn[n] = lssn ; /* export local variables */
 etsi_lbsn[n] = lbsn ;

#if PRINTAPS
 printf("# Parameters ETSInode(%d): ",n+1);
 if
 :: ARCHtype[n]==_1_1 -> printf("1+1, ")
 :: ARCHtype[n]==_1_N -> printf("1:N, ")
 fi ;
 if
 :: SWtype[n]==uni_directional -> printf("unidir, ")
 :: SWtype[n]==bi_directional -> printf("bidir, ")
 fi ;
 if
 :: OPERtype[n]==non_revertive -> printf("non-rev, ")
 :: OPERtype[n]==revertive -> printf("revertive, ")
 fi ;
 printf("APS=%d, ", APSmode[n]);
 printf("EXTRAtraffic=%d", EXTRAtraffic[n]) ;
 printf("\n") ;
#endif

AGAIN: skip ;

WAITMSG:
 stimul_is_aps=false ;
 /* The rest state of the node: */
end: do
 :: protin?APS,m1,m2,m3 ->
 goto APSIN
 :: extcmd?cmd,extsig ->
 goto EXTERN
 :: win1?STATUS,srt[1] ->
 sr=1;
 goto SIGNALREQUEST
 :: win2?STATUS,srt[2] ->
 sr=2;

Annex B: The PROMELA Model of the ETSI Protection Switching Process 6

 goto SIGNALREQUEST
 :: protin?STATUS,srt[0],m2,m3 ->
 sr=0;
 goto SIGNALREQUEST
 od ;

APSIN: newAPS = (m1!=prev_m1 || m2!=prev_m2 || m3!=prev_m3) ;
 prev_m1=m1; prev_m2=m2; prev_m3=m3 ;
 if
 :: (srt[0]!=SFL && srt[0]!=SFH) && (APSmode[n]==true) &&
 !(ARCHtype[n]==_1_1 && SWtype[n]==uni_directional) &&
 newAPS
 ->
 rrt=m1;
 rrsn=m2;
 rbsn=m3;
 stimul_is_aps=true ;
 goto LOCAL
 :: else ->
 goto AGAIN ; /* cannot receive APS msg's */
 fi ;

EXTERN: if
 :: extsig>Nmax -> error
 :: else -> skip ;
 fi ;

 if
 :: (cmd==CLEAR) ->
 ert = NR ;
 ersn = 0 ;
 :: (cmd==LO) ->
 if
 :: (OPERtype[n]==revertive) ->
 ert = LO ;
 ersn = 0 ;
 :: else ->
 goto AGAIN ;
 fi ;
 :: (cmd==FSw) ->
 if
 :: (OPERtype[n]==revertive) && (extsig==0) ->
 goto AGAIN ;
 :: else ->
 ert = FSw ;
 ersn = extsig ;
 fi ;
 :: (cmd==MSw) ->
 if
 :: (OPERtype[n]==revertive) && (extsig==0) ->
 goto AGAIN ;
 :: else ->
 ert = MSw ;
 ersn = extsig ;
 fi ;
 :: (cmd==EXER) ->
 ert = EXER ;
 ersn = extsig ;

 :: (cmd==TO) ->
 if
 :: (OPERtype[n]==revertive) ->
 CLEARTIMER(WTRtimer) /* WTR TO modelled via ext.cmd */
 :: else ->
 goto AGAIN ;
 fi ;

 :: else -> error
 fi ;
 goto LOCAL ;

SIGNALREQUEST:
 if
 :: (srt[sr]==SF) ->
 if
 :: (SFpriority[sr]==HIGH) -> srt[sr]=SFH
 :: else -> srt[sr]=SFL
 fi
 :: (srt[sr]==SD) ->

Annex B: The PROMELA Model of the ETSI Protection Switching Process 7

 if
 :: (SDpriority[sr]==HIGH) -> srt[sr]=SDH
 :: else -> srt[sr]=SDL
 fi
 :: (srt[sr]==NR) -> srt[sr]=NR
 :: else -> error ;
 fi ;

LOCAL: if
 :: lrt==WTR && ert==EXER ->
 lrtnew = NR ;
 lrsnnew = 0 ;
 lrsource = SOURCE_SIGNAL ;
 :: else /* normal case: initiate new with external */
 lrtnew = ert ;
 lrsnnew = ersn ;
 lrsource = SOURCE_EXTERNAL
 fi ;

 i = 0 ;
 do
 :: i>Nmax -> break
 :: else ->
 if
 :: (srt[i] > lrtnew) ->
 lrtnew = srt[i] ;
 lrsnnew = i ;
 lrsource = SOURCE_SIGNAL
 :: else -> skip
 fi ;
 i++ ;
 od ;

 if /* SF/0 - FSw prio */
 :: (lrtnew==FSw) && ((srt[0]==SFH) || (srt[0]==SFL)) && APSmode[n] ->
 lrtnew = srt[0] ;
 lrsnnew = 0 ;
 lrsource = SOURCE_SIGNAL
 :: else -> skip
 fi ;

 if
 :: lrtnew==NR -> /* Non-request case */
 if
 :: OPERtype[n]==non_revertive /* => ARCHtype[n]==_1_1 */ ->
 if
 :: (grsn==1) ->
 lrt = DNR
 :: else ->
 lrt = NR ;
 lrsn = 0
 fi
 :: OPERtype[n]==revertive ->
 if
 :: lrt==SFH ||
 lrt==SFL ||
 lrt==SDH ||
 lrt==SDL ->
 lrt = WTR ;
 SETTIMER(WTRtimer, WTRtime) ;
 :: lrt==WTR && TIMERACTIVE(WTRtimer)
 && !TIMEREXPIRY(WTRtimer) ->
 lrt = WTR ;
 :: else ->
 lrt = NR ;
 CLEARTIMER(WTRtimer) ;
 if
 :: EXTRAtraffic[n]==true ->
 lrsn = Nmax+1
 :: else ->
 lrsn = 0
 fi
 fi
 fi
 :: else /* lrtnew!=NR */ -> /* Request-case */
 if
 :: lrsource==SOURCE_EXTERNAL ->
 lrt=lrtnew ;
 lrsn=lrsnnew

Annex B: The PROMELA Model of the ETSI Protection Switching Process 8

 :: lrsource==SOURCE_SIGNAL ->
 if
/* :: lrtnew!=lrt || (((srt[0]==SFH)||(srt[0]==SFL)) && APSmode[n]) ->*/
 :: lrtnew!=lrt ->
 lrt=lrtnew ;
 lrsn=lrsnnew
 :: else -> /* same request type ... */
 if
 :: srt[lrsn] != lrtnew -> /* only if */
 lrsn = lrsnnew
 :: else -> skip
 fi
 fi
 fi
 fi ;

GLOBAL: skip ;

 soon++ ;
 assert(soon < 20) ;
/* within X passes through this point (including all processes) the protocol */
/* must stabilize. */

 if
 :: SWtype[n]==bi_directional &&
 !((srt[0]==SFH) || (srt[0]==SFL)) &&
 rrt!=RR &&
 (rrt>lrt ||
 (rrt==lrt && rrt!=NR &&
 (grt==RR ||
 (grt!=RR && rrsn<lrsn)
))) ->
 grt = RR ;
 grsn = rrsn ;
 :: else ->
 grt = lrt ;
 grsn = lrsn ;
 fi ;
 if
 :: SWtype[n]==bi_directional &&
 lrt==FSw &&
 (((rrt==SFH) || (rrt==SFL)) && (rrsn==0)) ->
 grt = RR ;
 grsn = rrsn ;
 :: else -> skip
 fi ;

REVIEWEXTERN:
 if
 :: (ert!=NR) &&
 !((grt==ert || grt==RR) && grsn==ersn) ->
 ert = NR ;
 ersn = 0 ;
 goto LOCAL ; /* do local again */
 :: else -> skip ;
 fi;

CHECKWTR:
 if
 :: lrt==WTR && grt!=WTR ->
 lrt=NR ;
 CLEARTIMER(WTRtimer) ;
/* goto LOCAL /* do local again */
 :: else -> skip
 fi ;

BRIDGE: if
 :: ARCHtype[n]==_1_1 ->
 lbsn = 1 ;
 :: else ->
 if
 :: !((srt[0]==SFH) || (srt[0]==SFL)) && !defect ->
 lbsn = rrsn ;
 :: else ->
 if
 :: (SWtype[n]==bi_directional) ->
 lbsn = 0
 :: else ->
 lbsn = lbsn ;

Annex B: The PROMELA Model of the ETSI Protection Switching Process 9

 fi
 fi
 fi ;

SELECTOR:
 if
 :: ARCHtype[n]==_1_1 && SWtype[n]==uni_directional ->
 if
 :: ((srt[0]==SFH) || (srt[0]==SFL)) && APSmode[n]==true ->
 lssn = 0
 :: else ->
 lssn = grsn
 fi
 :: else ->
 if
 :: (grsn==rbsn) && !((srt[0]==SFH) || (srt[0]==SFL)) && (!defect) ->
 lssn = grsn
 :: else ->
 lssn = 0
 fi
 fi ;

TRANSMIT:
 if
 :: rrsn==0 ->
 tx_lbsn = 0
 :: else ->
 tx_lbsn = lbsn
 fi ;

 etsi_lssn[n] = lssn ; /* export local variables */
 etsi_lbsn[n] = lbsn ;
 etsi_grt[n] = grt ;

PRINTSTATUS: skip ;

#if PRINTAPS
 byte rt;
 if
 :: (!newAPS) -> skip/*m1 = NONE*/
 :: else -> skip
 fi ;
 printf("# | %d | %d | ", etsi_lssn[N1], etsi_lbsn[N1]) ;
 rt = ((n==N1)->grt:NONE) ;
 if
 :: rt==LO -> printf("LO ")
 :: rt==FSw -> printf("FSw ")
 :: rt==SFH -> printf("SFH ")
 :: rt==SFL -> printf("SFL ")
 :: rt==SDH -> printf("SDH ")
 :: rt==SDL -> printf("SDL ")
 :: rt==MSw -> printf("MSw ")
 :: rt==WTR -> printf("WTR ")
 :: rt==EXER -> printf("EXER")
 :: rt==RR -> printf("RR ")
 :: rt==DNR -> printf("DNR ")
 :: rt==NR -> printf("NR ")
 :: rt==INV -> printf("INV ")
 :: rt==NONE -> printf(" ")
 :: else -> printf("huh?")
 fi ;
 if
 :: (rt==NONE) -> printf(" ") ;
 :: else -> printf(",%d,%d", grsn,tx_lbsn);
 fi ;
 if
 :: (n==N1) -> printf(" > ")
 :: (n==N2) -> printf(" < ")
 :: else -> printf(" ? ")
 fi ;
 rt = ((n==N2)->grt:NONE) ;
 if
 :: rt==LO -> printf("LO ")
 :: rt==FSw -> printf("FSw ")
 :: rt==SFH -> printf("SFH ")
 :: rt==SFL -> printf("SFL ")
 :: rt==SDH -> printf("SDH ")
 :: rt==SDL -> printf("SDL ")
 :: rt==MSw -> printf("MSw ")

Annex B: The PROMELA Model of the ETSI Protection Switching Process 10

 :: rt==WTR -> printf("WTR ")
 :: rt==EXER -> printf("EXER")
 :: rt==RR -> printf("RR ")
 :: rt==DNR -> printf("DNR ")
 :: rt==NR -> printf("NR ")
 :: rt==INV -> printf("INV ")
 :: rt==NONE -> printf(" ")
 :: else -> printf("huh?")
 fi ;
 if
 :: (rt==NONE) -> printf(" ") ;
 :: else -> printf(",%d,%d", grsn,tx_lbsn);
 fi ;
 printf(" | %d | %d | ", etsi_lssn[N2], etsi_lbsn[N2]) ;
 printf("\n") ;
#endif

#if PRINTIS
 printf("##IS: NODE=%d, LSSN=%d, LBSN=%d\n", n, etsi_lssn[n], etsi_lbsn[n]) ;
#endif

 protout!APS,grt,grsn,tx_lbsn ;

 goto AGAIN ;
} /* end atomic --- */

} /* end proctype ETSInode */

chan eq = [20] of {byte, byte, byte} ;

chan extcmd_[2] = [0] of { byte, byte } ;

/* chan in1_[2] = [0] of { mtype, byte } ;
 chan out1_[2] = [0] of { mtype, byte } ;
 chan in2_[2] = [0] of { mtype, byte } ;
 chan out2_[2] = [0] of { mtype, byte } ;
*/
chan dummy = [0] of {byte} ;

chan win1_[2] = [0] of { mtype, byte } ;
chan win2_[2] = [0] of { mtype, byte } ;
chan protin_[2] = [0] of { mtype, byte, byte, byte } ;

proctype Random()
{ byte a,b;
 byte x=1;

AGAIN: do
 :: if
 :: x>3 -> goto AFTER
 :: else -> skip
 fi ;
 if
 :: a=NR;
 :: a=SD;
 :: a=SF;

 :: a=LO ;
 :: a=FSw ;
 :: a=MSw ;
 :: a=EXER ;
 fi ;
 if
 :: b=0 ;
 :: b=1 ;
 :: b=2 ;
 fi ;
 if
 :: ((x==1) || (x==3)) ->
 eq!N1,a,b ;
 :: (x==2) ->
 eq!N2,a,b ;
 fi ;
 x++ ;
 od ;
AFTER: skip ;
}

Annex B: The PROMELA Model of the ETSI Protection Switching Process 11

init
{
atomic { /* --- */
#if PRINTAPS
 printf("# Remark: \n") ;
#endif

/*IS: stimuli */

 eq!N1,SF,1 ;
 eq!N1,SF,0 ;

/* run Random(); */

 Nmax = 2 ;
/* model parameters per node */
 ARCHtype[N1] = _1_N ;
 SWtype[N1] = bi_directional ;
 OPERtype[N1] = revertive ;
 APSmode[N1] = true ;
 EXTRAtraffic[N1] = false ;
/* copy */
 ARCHtype[N2] = ARCHtype[N1] ;
 SWtype[N2] = SWtype[N1] ;
 OPERtype[N2] = OPERtype[N1] ;
 APSmode[N2] = APSmode[N1] ;
 EXTRAtraffic[N2] = EXTRAtraffic[N1] ;

/* The differnce between N1 and N2: */
/* SWtype[N2] = bi_directional ; */

/* common parameters */
 WTRtime = 1 ;
 SwitchingTime = 1 ;
 PROTtype = TRAIL ;

/* model parameter dependecies */
 byte n=N1, other;
 do
 :: n>N2 -> break ;
 :: else ->
 assert(Nmax>=1 && Nmax<=2) ;
 assert(imply(OPERtype[n]==non_revertive, ARCHtype[n]==_1_1));
 assert(imply(ARCHtype[n]==_1_N, APSmode[n])) ;
 assert(imply(ARCHtype[n]==_1_1, !EXTRAtraffic[n] && Nmax==1));
 assert(imply(SWtype[n]==bi_directional, APSmode[n])) ;

 other=((n==N1)->N2:N1) ;

run ETSInode(n,
extcmd_[n], dummy, dummy, dummy, dummy, win1_[n], win1_[other],
win2_[n], win2_[other], protin_[n], protin_[other],
1,
LOW,LOW,LOW,LOW,LOW,LOW) ;

 timeout ; /* wait */

 n++ ;
 od;

#if PRINTAPS
 printf("# |----|----|----------|----------|----|----|\n") ;
 printf("# |LSSN|LBSN| APS 1->2 | APS 1<-2 |LSSN|LBSN|\n") ;
 printf("# |----|----|----------|----------|----|----|\n") ;
#endif
 win1_[N1]!STATUS,NR ;
 timeout; soon=0 ;
 win1_[N2]!STATUS,NR ;
 timeout; soon=0 ;
 printf("# |----|----|----[initialized]----|----|----|\n") ;

 run sequential_simulator() ;

} /* end atomic --- */

}

Annex B: The PROMELA Model of the ETSI Protection Switching Process 12

/**/

proctype sequential_simulator()
{
 byte node, request, signal, rt, cm ;

atomic { /* --- */

end: do
 :: eq?node,request,signal ->

#if PRINTAPS
 printf("### Node %d, command ", node+1) ;
 rt=request ;
 if
 :: rt==CLEAR -> printf("CLR")
 :: rt==TO -> printf("TO")

 :: rt==LO -> printf("LO")
 :: rt==FSw -> printf("FSw")

 :: rt==SD -> printf("SD")
 :: rt==SF -> printf("SF")
 :: rt==NR -> printf("NR")

 :: rt==MSw -> printf("MSw")
 :: rt==EXER -> printf("EXER")
 :: else -> printf("huh?")
 fi ;
 if
 :: (rt!=CLEAR) && (rt!=TO) ->
 printf(" for signal %d\n", signal)
 :: else ->
 printf("\n")
 fi ;
#endif

 if
 :: (request==CLEAR) || (request==LO) || (request==FSw) ||
 (request==MSw) || (request==EXER) ||
 (request==TO) ->
 extcmd_[node]!request,signal ;
 :: else ->
 if
 :: (signal==0) -> protin_[node]!STATUS,request,0,0
 :: (signal==1) -> win1_[node]!STATUS,request
 :: (signal==2) -> win2_[node]!STATUS,request
 :: else -> error
 fi ;
 fi ;

 timeout; soon=0 ;

soft_assert(
imply(ARCHtype[N1]==_1_N, /*->*/
 etsi_lssn[N1]==etsi_lbsn[N2] &&
 etsi_lssn[N2]==etsi_lbsn[N1])
) ; /* connection */

soft_assert(
imply(SWtype[N1]==bi_directional, /*->*/
 etsi_lssn[N1]==etsi_lssn[N2])
); /* uniform */

#if 0
soft_assert(
imply(SWtype[N1]==bi_directional, /*->*/
 /* both grt same and not equal to RR */
 (etsi_grt[N1]!=RR && etsi_grt[N1]==etsi_grt[N2]) ||
 /* one grt is RR other is not RR and not NR */
 (etsi_grt[N1]==RR && etsi_grt[N2]!=RR && etsi_grt[N2]!=NR) ||
 (etsi_grt[N2]==RR && etsi_grt[N1]!=RR && etsi_grt[N1]!=NR))
); /* correct RR state */
#endif

#if 0
 /* one grt is SF on prot, same grsn is prot, lssn is prot */
 ((grt[N1]==SFL || grt[N1]==SFH) && grsn[N1]==0 && lssn[N1]==0) ||

Annex B: The PROMELA Model of the ETSI Protection Switching Process 13

 ((grt[N2]==SFL || grt[N2]==SFH) && grsn[N2]==0 && lssn[N1]==0)
#endif

 od ;
} /* end atomic --- */
}

/***********************************/

Annex C: The SPIN manual

Annex C

The SPIN Manual

Annex D: The modelling of time in PROMELA 1

Annex D

The modelling of time in PROMELA

Time abstraction

"Within ONE time unit all processes are done executing, the system is stable, and some timers
or time conditions are waiting."

Consequences

• After a time unit all processes are blocked, either they are waiting for new input or they are

waiting for a timer to expire or untill time reaches a certain value. Then a system-wide
(PROMELA-) timeout occures. The time is incremented by one by the time process. If
some timer/time expression becomes true the associated process can execute.

• It will not be possible to 'schedule' an event at a moment the system is still running, i.e. is

not stable.

• The time process is the only process that uses timeout. Special care must be taken if

timeout is used within the model also.
Some cases:

− It doesn't matter wether the model-timeout or a time-timeout occures; let the
simulator choose (the model-timeout is either smaller or longer then some units of
time).

− If model-timeouts must occure before time progresses: use a mechanism to block the
time process , e.g. proctype GlobalTime :: (!TimeIsBlocked) && timeout -> ...

− Implement model-timeouts as timers e.g. SETIMER(to,1) ; do :: ... ::
TIMEREXPIRY(to) -> CLEARTIMER(to)

Annex D: The modelling of time in PROMELA 2

Implementation

Note:
To force program termination when all timers are inactive, track must kept of the number of
active timers (nmbActiveTimers).

1: /* Global variables: */
2: byte time=0 ;
3: byte nmbActiveTimers=0 ;
4:
5: /* Constants: */
6: #define INACTIVE 255
7: #define MAXTIME (INACTIVE-1)
8:
9: /* Timer Macros: */
10: #define SETTIMER(X,Y) { if :: (X==INACTIVE) -> nmbActiveTimers++ \
11: :: else -> skip fi ; X=time+(Y) }
12: #define CLEARTIMER(X) { if :: (X!=INACTIVE) -> nmbActiveTimers-- \
13: :: else -> skip fi ; X=INACTIVE }
14: #define TIMEREXPIRY(X) (time==X)
15: #define TIMERACTIVE(X) (X!=INACTIVE)
16: /* Time Macros: */
17: #define WAITFORTIME(X) {nmbActiveTimers++;(time==(X));nmbActiveTimers--}
18: /* DONOT use as a guard!! x++ is always executable.. */
19:
20: (basic) Time process: do
21: :: timeout ->
22: if
23: :: (nmbActiveTimers>0) && (time<MAXTIME) ->
24: time++
25: :: else -> break
26: fi
27: od
28:
29: Timer commands in a example: byte aTimer ;
30: #define HOtime 10 ;
31: do
32: - wait for expiry: :: TIMEREXPIRY(aTimer) ->
33: - clear a timer: CLEARTIMER(aTimer) ;
34: ...
35: - test a timer: :: (expression) && !TIMERACTIVE(aTimer) ->
36: - set a timer: SETTIMER(aTimer,HOtime) ;
37: :: (other expression) && TIMERACTIVE(aTimer) ->
38: CLEARTIMER(aTIMER) ;
39: break
40: od ;
41: Time commands in a example:
42: - wait until a certain time: channel!NORMAL ;
43: WAITFORTIME(5) ;
44: channel!FAIL ;

Annex E: Graduation research paper

Annex E

Graduation research paper

The faculty of Electrical Engineering demands that besides the graduation report, a paper is
produced that reflects the graduation work in a standard publication style.

Linear protection switching requirements
simulation & verification

J.L.R. de Graaff

Delft University of Technology
Faculty of Electrical Engineering

Telecommunications and Traffic-Control Systems Group

Abstract—This paper presents a research

in system specification and verification. The
characteristics of specifications are discussed
and verification languages and tools are
investigated. A protocol that coordinates
linear protection switching, a network
availability enhancement technique, is
verified and the findings are discussed.

Index Terms—System specification,

simulation, verification, linear protection
switching, APS.

I. Introduction

The electronic systems we design today, are

becoming more and more complex. This is
especially true for telecommunication systems.
Generally, the behaviour and functionality in the
first stages of specification, will be described in
the plain English language. In a later stage,
when more detailed information is necessary, a
more formal way of specification semantics will
be required.

A first and most important issue in

specification is the specification itself. How can
system behaviour be modelled? What are the
characteristics of the aspects of system
behaviour? What languages are needed? Can we
model a system in one language or do we need
different languages for different aspects of the
system? And how do these languages interact?

If a system cannot be modelled adequately,
problems are not far away.

The second issue is: How do we know if

these specifications are correct? Do these
specifications actually describe the intended
behaviour? Errors in these specifications can be
disastrous for the functioning of the system,
either on a equipment level or on the network
level. When for example an error in a protocol,
on which a large public telephone network is
relying, results in breaking down of all
communications, thousands of users are cut off.
Such catastrophes results in significant loss of
revenues or even human lives.

Verification of system specifications is an

absolute must. Besides the determination of
correctness of specifications, the verification
process also adds insight and confidence in the
system.

II. System Specifications

Describing a system is a complex task and

has many pitfalls. Telecommunication systems
are first designed at a functional and behavioral
level. This description asks for a language that
can adequately model the aspects of the system,
such as the functional behavior, the behavior in
time, the architectural structure. These
specifications are used as a basis for further
development and implementation.

To indicate the many requirements for

specifications, the list below is presented.
Afstudeerdocent: ir. J.A.M. Nijhof
Begeleider: ir. F. Speelman
Technisch begeleider: ir. M.P.J. Vissers
Periode: januari 1997 - augustus 1997
Opdrachtnummer: A-786
Datum: 26 February, 2001

Linear Protection Switching Requirements Simulation & Validation

2

Successful specifications are:
A) Complete, correct, unambiguous and

consistent
B) Minimal
C) Usable
D) Identifiable, traceable and surveyable
E) Verifiable and testable for properties
F) Executable
G) Easily modified
H) Linkable to other requirements

Requirement A is the fundamental purpose of
specifications.
Requirement B addresses over-specification.
Requirement C addresses implementability of
the specifications.
Requirement D demands that specifications can
be understood and related to common terms and
concepts.
Requirement E demands the specification to be
testable; this requires that the specification also
formulates what exactly is correct.
Requirement F demands the specification to be
understandable by the computer.
Requirement G and H address the
maintainability and transportability of
specifications.

III. System Verification

A. Verification methods

To test a system for correct behaviour, its
specification is verified. In principal, systems can
be verified manually, with use of mathematics or
some systematic method. But for larger and
more complex systems this is becoming
impossible. This is especially true for concurrent
systems, like computer and telecommunication
systems and protocols. An automated
verification method is a must.

A well-known type of systems, that are often

subject in verification, is the protocol.
Correctness of protocols is discussed [1] and
more extensively in [2].

In order to verify automatically, the use of

the computer is needed and for that the system

has to be described formally. The formal
description of the system requires a formal
language, with both a formal syntax and a
formal semantics. A formal syntaxis describes
the model in a precise and unambiguous way. A
formal semantics assigns a precise mathematical
meaning to each of the modelling primitives. See
[3] for more information on this subject.

In addition to the formal modelling, a tool is

needed that can execute this model and
determine its correctness. Generally, verification
tools convert system models into finite state
machines and analyze their states.

In order to determine the correctness of

system behaviour, a description of correct
behaviour is also needed. These are also called
correctness requirements. If all possible
behaviour of the system model satisfies these
correctness requirements, the model is said to be
validated.

Note that system simulation does not validate

its behaviour, it only shows the behaviour after a
certain stimulus of the system.

A major problem in system validation is the

state explosion problem. This denotes the fact
that the total number of system states can be
that large, that a complete analysis may not be
possible in a certain environment. Common
limitations are the available memory to store the
analyzed states and the maximum time a
validation may take.

A system is validated by performing a full

state search analysis. The usual strategy is the
depth-first search, see [2]. When such a
validation stops, because a limitation is reached,
the analyzed part is a ‘solid cut’ of the total
state structure, as depicted in Fig. 1.

Linear Protection Switching Requirements Simulation & Validation

3

X

X

X X

Initial state

End states
Loop

Fig. 1 State analysis

As incorrect system states tends to be equally

distributed in both the depth as the breadth, a
limited full state search probably only detects a
small number of errors.

In such a limited environment, better search

strategies can be used, that aim to analyze as
much of the system as possible within the
imposed limitations. This requires a state
reduction technique or proof approximation
technique. See Fig. 2

X

X

X
Loop

X

Initial state

End states

Fig. 2 Partial state analysis

B. Verification languages and tools

In addition to formal syntaxis and semantics,

a language must possess several other
properties.

In order to adequately model the behaviour

of distributed systems, as is encountered much
in the field of telecommunication and
information technology, some required
properties are:

• Concurrency; the independent execution of

processes in an environment.
• Synchronous/asynchronous communication;

processes communicate synchronously when
the sending and receiving of a message
occurs at the same time and asynchronously
when the reception of a message may occur
at any time. In this case, the channel has
memory.

• Non-determinism; the possibility to specify a
set of different courses of action, Leaving it
open which of them is chosen.

• Time; time can be modelled as a physical
unit (seconds, milliseconds), as logical unit
(clock ticks) or as temporal properties (A
occurs ‘after’ B).

C. The tool SPIN

SPIN is a software package that supports the

formal verification of concurrent systems. The
software was developed at Bell Labs in the
formal methods and verification group. It is
extensively discussed in [2].

SPIN has been used to trace logical design

errors in distributed systems design, such as
operating systems, data communications
protocols, switching systems, concurrent
algorithms, railway signaling protocols, etc. The
tool checks the logical consistency of a
specification. It reports on deadlocks,
unspecified receptions, flags incompleteness,
race conditions, and unwarranted assumptions
about the relative speeds of processes.

To verify a design, a formal model is built

using PROMELA1, SPIN's input language.
SPIN is an abbreviation of Simple PROMELA
Interpreter. PROMELA is a non-deterministic

1 Process Meta Language

Linear Protection Switching Requirements Simulation & Validation

4

language. It contains the primitives for
specifying asynchronous (buffered) message
passing via channels, with arbitrary numbers of
message parameters. It also allows for the
specification of synchronous message passing
systems (rendezvous). Mixed systems, using
both synchronous and asynchronous
communications, are also supported.

SPIN can be used in three basic modes:
• as a protocol simulator, allowing for rapid

prototyping with a random, guided, or
interactive simulations

• as an exhaustive state space analyzer,
capable of rigorously proving the validity of
user specified correctness requirements

• as a bit-state space analyzer that can
validate even very large protocol systems
with maximal coverage of the state space (a
proof approximation technique).

SPIN is very useful in verifying distributed

systems and has all required properties to handle
complex and large systems.

IV. Protocol Verification

A. Linear Protection Switching

Protection switching is a method to provide a

certain level of survivability in a transport
network by means of diversity. Network
survivability is defined as the ability to provide
continuity of transport services in the presence
of failures.

When transmission lines fail, their service is

automatically taken over by pre-assigned
redundant transmission lines. This is called
protection.

Another method to protect transmission lines

is restoration. In this case, the redundant
capacity is not pre-assigned and must be
discovered by some network intelligence.
Obviously this takes more time. A common
requirement for completion of protection
switching is 50 ms.

Today only the linear and the ring topologies
are used in protection switching schemes. The
ring protection topology is not discussed here.

In linear protection switching, one or more

transmission lines between two certain nodes in
a network are protected with a redundant
transmission line, called protection line. See Fig.
3.

Normal conditions

Protection condition

Fig. 3 Linear protection switching

Linear protection switching comes in
different forms. Either one or more lines can be
protected with one protection line and
protection can involve both transmission
directions together or each direction separately.
The latter is shown in Fig. 3.

The switching requires a communication

(telemetry) channel to coordinate the protection
switching operations. Such a channel is called
APS1 channel. The coordination is handled by
the APS protocol.

This protocol must resolve which protection

node has the highest priority request for
switching to protection and then take care that
both nodes switch the correct line over
protection.

The APS protocol is depicted in Fig. 4. When

node A detects a line failure, it sends an APS
message to node B, requesting for a protection
switching action. Node B responds with a
message, indicating that it will follow this

1 Automatic Protection Switching

Linear Protection Switching Requirements Simulation & Validation

5

request. Then node A sends a message that
completes the switching action.

Node A Node B

SF,1,0

RR,1,1

SF,1,1

Fig. 4 Example of APS protocol behaviour

B. The ETSI Specifications

The linear protection switching specification

in the ETSI1 ETS300-417 standard attempts to
capture the behaviour of linear protection
switching in SDH2 networks. It is based in the
protection switching specification from the
G.783 standard, a ITU3 standard..

The behavioral description is specified in

pseudocode, a general imperative computer
language, that resembles the C or PASCAL
languages.

C. Verification results

The verification of the APS protocol have

resulted in several observations. Firstly,
simulations have shown that some intended
behaviour was not specified. Secondly,
simulations and validations have shown that the
specification was not correctly implementing the
intended behaviour. Finally, some questions
have arisen, concerning design choices.

All together, six design flaws were found and

adjustments or corrections are proposed and
verified. Also some open issues are left, that
need future attention.

1 European Telecommunications Standards

Institute
2 Synchronous Digital Hierarchy, a standard for

transport networks
3 International Telecommunication Union

The verification has added more insight in the

behaviour and the specification and confidence
in the specifications has grown.

V. Conclusions

System specifications should be written as

formal and unambiguous as possible to enable
verification. Performing the verification on a
computer is absolutely necessary, because even
simple communication systems or protocols can
be to large and complicated to verify manually
or mathematically.

The specification and verification of systems

demand several properties of the specification
language and the verification tool. Note that not
all languages are suitable to model all system
aspects and functions adequately.

From this investigation, a tool and its related

language is found to be suitable for the
verification of the linear protection switching
specification. This tool is called SPIN and its
modelling language is called PROMELA.

This tool is easy to use and has a large

validation power, which is required for large and
complex systems.

The SPIN tool is used to verify the APS

protocol and several flaws were found, some
characteristics have come to the surface and the
confidence in the specification has grown.

The reader is referred to [4] for more

information on this research.

References

[1] J. Walrand, Communication Networks: A

First Course, Homewood, IL: IRWIN,
ISBN 0-256-08864-0, 1991.

[2] G.J. Holzmann, Design and Validation of
Computer Protocols, Englewood Cliffs,
N.J.: Prentice Hall, ISBN 0-13-539925-4,
1991.

Linear Protection Switching Requirements Simulation & Validation

6

[3] P.H.A. van der Putten and J.P.M. Voeten,
Specification of Reactive
Hardware/Software Systems, Ph.D. thesis,
Technical University Eindhoven,
Eindhoven, The Netherlands, 1997.

[4] J.L.R. de Graaff, Linear Protection
Switching Requirements Simulation &
Validation, Graduation thesis, Document
reference: A-786, Telecommunications and
Traffic-Control Systems Group, Faculty of
Electrical Engineering, Technical University
of Technology, The Netherlands, 1997.

